The MedAustron Project Conception and Current Status

Thomas Schreiner – Michael Benedikt

PEG MedAustron - CERN

February 11, 2013

Radiation Therapy

• aim:

- highest dose to target volume, to damage tumor cells
- spare healthy tissue and critical organs from high doses
- ⇒ match dose exactly to tumour shape
- radiation types
 - conventional therapy: photons, electrons
 - ion-beam therapy: protons, light ions

MedAustron

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 2 / 20

Radiation Therapy

• aim:

- highest dose to target volume, to damage tumor cells
- spare healthy tissue and critical organs from high doses
- ⇒ match dose exactly to tumour shape
- radiation types
 - conventional therapy: photons, electrons
 - ion-beam therapy: protons, light ions

MedAustron

Dose Distribution in Water

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 3 / 20

Dose Distribution in Water

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 3 / 20

Dose Distribution in Water

Centre for Ion-Beam Therapy and Research

- radiation therapy and clinical research
 - protons and carbon ions
 - 24 000 single fractions per year corresponds to about 100 patients/day corresponds to about 1200 patients/year
 - three medical irradiation rooms
 - two shift operation from Monday to Friday
- non-clinical research
 - protons and light ions
 - one irradiation room dedicated for non-clinical research
 - labs for non-clinical purposes

MedAustron

Centre for Ion-Beam Therapy and Research

- radiation therapy and clinical research
 - protons and carbon ions
 - 24 000 single fractions per year corresponds to about 100 patients/day corresponds to about 1200 patients/year
 - three medical irradiation rooms
 - two shift operation from Monday to Friday
- non-clinical research
 - protons and light ions
 - one irradiation room dedicated for non-clinical research
 - labs for non-clinical purposes

MedAustron

Distribution of Beam Time

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 5 / 20

particles:	protons	carbon ions
	later additional ions like H	

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 6 / 20

particles:	protons	carbon ions
	later additional	ions like He or O
beam intensity particles per pulse:	$\leq 10^{10}$	\leq 4 $ imes$ 10 ⁸

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 6 / 20

particles:	protons	carbon ions
	later additional id	ons like He or O
beam intensity particles per pulse:	$\leq 10^{10}$	\leq 4 $ imes$ 10 ⁸
beam energy min – max:	60-800 MeV	120-400 MeV/A

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 6 / 20

particles:	protons	carbon ions
	later additional ions like He or O	
beam intensity particles per pulse:	$\leq 10^{10}$	$\leq 4 \times 10^8$
beam energy min – max:	60-800 MeV	120-400 MeV/A
magnetic rigidity min – max:	1.14-4.88 Tm	3.25-6.35 Tm

Thomas Schreiner (PEG MedAustron)

particles:	protons	carbon ions
	later additional i	ons like He or O
beam intensity particles per pulse:	$\leq 10^{10}$	$\leq 4 \times 10^8$
beam energy min – max:	60–800 MeV	120-400 MeV/A
magnetic rigidity min – max:	1.14-4.88 Tm	3.25-6.35 Tm
extraction duration min – max:	0.1-10 s	0.1-10 s

Thomas Schreiner (PEG MedAustron)

particles:	protons	carbon ions
	later additional ions like He or O	
beam intensity particles per pulse:	$\leq 10^{10}$	$\leq 4 imes 10^8$
beam energy min – max:	60-800 MeV	120-400 MeV/A
magnetic rigidity min – max:	1.14-4.88 Tm	3.25-6.35 Tm
extraction duration min – max:	0.1-10 s	0.1-10 s
beam delivery active scanning	horizontal-vertical fast scanning magnets energy variation with synchrotron	
		MedAustron

Thomas Schreiner (PEG MedAustron)

Accelerator Layout

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 7 / 20

Realisation Strategy – Flexibility for Operation

- injector area with sources accessible during operation
 - allows tuning of source in parallel to operation, change of ion type, etc.
- injector design allows for installation of up to five different ion sources
 - flexibility in the provision of different ion types for medical operation and research
- variable iso-centre optics for irradiation room for non-clinical research
 - allows parallel installation of several experiments
- fully exploit synchrotron capabilities to increase proton beam energy to 800 MeV for non-clinical research with limited additional effort
 - world-wide unique for comparable centres

MedAustron

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 8 / 20

Facility

Conventional construction:

administration, research, and medical area

Radiation protection:

accelerator and four irradiation rooms

MedAustron

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 9 / 20

Sandwich Construction – March 2012

• using ground excavation for radiation protection

MedAustron

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 10 / 20

Injector Hall with Ion Sources

MedAustron

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 11 / 20

Injector Bunker with Injector Linac

MedAustron

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 12 / 20

Synchrotron Hall and Main Bending Magnet

MedAustron

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 13 / 20

Power Converter Hall and Linac RF Amplifier

MedAustron

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 14 / 20

Main Non-Clinical Research Areas

• Experimental Physics:

- detector development and test
- proton scattering experiments
- high-energy proton-computed tomography

• Medical Radiation Physics:

- basic and applied dosimetry
- dose calculation and optimisation
- treatment planning and plan evaluation

• Radiation Biology:

- radiation induced mechanisms of cell death
- research on biomarkers and bioimiging

• Education and Training

Thomas Schreiner (PEG MedAustron)

• one fixed horizontal beam line

- variable isocentre over 5 metres adjustable, installation of several experiments two isocentres
- removable nozzle for the first isocentre
- same equipment as in the medical irradiation rooms for the first isocentre, i. e. laser, positioning and imaging system
- circuit points for pressurised air and demineralised water
- electrical sockets and power supplies
- room size approximately 8 m × 12 m, i.e. 96 m²

 local control room with control console enabling visual monitoring and display of accelerator parameters

Thomas Schreiner (PEG MedAustron)

- one fixed horizontal beam line
- variable isocentre over 5 metres adjustable, installation of several experiments – two isocentres

Thomas Schreiner (PEG MedAustron)

- one fixed horizontal beam line
- variable isocentre over 5 metres adjustable, installation of several experiments – two isocentres
- removable nozzle for the first isocentre
- same equipment as in the medical irradiation rooms for the first isocentre, i. e. laser, positioning and imaging system
- circuit points for pressurised air and demineralised water
- electrical sockets and power supplies
- room size approximately 8 m imes 12 m, i.e. 96 m²

 local control room with control console enabling visual monitoring and display of accelerator parameters

Thomas Schreiner (PEG MedAustron)

- one fixed horizontal beam line
- variable isocentre over 5 metres adjustable, installation of several experiments – two isocentres
- removable nozzle for the first isocentre
- same equipment as in the medical irradiation rooms for the first isocentre, i.e. laser, positioning and imaging system
- circuit points for pressurised air and demineralised water
- electrical sockets and power supplies
- room size approximately 8 m \times 12 m, i.e. 96 m²

 local control room with control console enabling visual monitoring and display of accelerator parameters

Thomas Schreiner (PEG MedAustron)

- one fixed horizontal beam line
- variable isocentre over 5 metres adjustable, installation of several experiments – two isocentres
- removable nozzle for the first isocentre
- same equipment as in the medical irradiation rooms for the first isocentre, i.e. laser, positioning and imaging system
- circuit points for pressurised air and demineralised water
- electrical sockets and power supplies
- room size approximately 8 m \times 12 m, i.e. 96 m²

 local control room with control console enabling visual monitoring and display of accelerator parameters

Thomas Schreiner (PEG MedAustron)

- one fixed horizontal beam line
- variable isocentre over 5 metres adjustable, installation of several experiments – two isocentres
- removable nozzle for the first isocentre
- same equipment as in the medical irradiation rooms for the first isocentre, i.e. laser, positioning and imaging system
- circuit points for pressurised air and demineralised water
- electrical sockets and power supplies
- room size approximately 8 m \times 12 m, i.e. 96 m²

 local control room with control console enabling visual monitoring and display of accelerator parameters

MedAustron

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 16 / 20

- one fixed horizontal beam line
- variable isocentre over 5 metres adjustable, installation of several experiments – two isocentres
- removable nozzle for the first isocentre
- same equipment as in the medical irradiation rooms for the first isocentre, i.e. laser, positioning and imaging system
- circuit points for pressurised air and demineralised water
- electrical sockets and power supplies
- room size approximately 8 m × 12 m, i.e. 96 m²
- local control room with control console enabling visual monitoring and display of accelerator parameters

MedAustron

Thomas Schreiner (PEG MedAustron)

Specific Rooms for Experimental Physics

- cooling-down room
 - storage of activated material after irradiation
 - $\bullet~\sim 28~m^2$
- preparation room
 - partial installation of experiments and preparation tests outside of the irradiation room
 - $\sim 28 \text{ m}^2$
- storage room
 - safe-keeping of external experimental equipment, material and devices
 - $\bullet~\sim 55~{
 m m}^2$

Thomas Schreiner (PEG MedAustron)

Specific Rooms for Experimental Physics

- cooling-down room
 - storage of activated material after irradiation
 - $\bullet~\sim 28~m^2$
- preparation room
 - partial installation of experiments and preparation tests outside of the irradiation room
 - $\bullet~\sim 28~m^2$
- storage room
 - safe-keeping of external experimental equipment, material and devices $\sim 55~{\rm m}^2$

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 17 / 20

Specific Rooms for Experimental Physics

- cooling-down room
 - storage of activated material after irradiation
 - $\bullet~\sim 28~m^2$
- preparation room
 - partial installation of experiments and preparation tests outside of the irradiation room
 - $\bullet~\sim 28~m^2$
- storage room
 - safe-keeping of external experimental equipment, material and devices
 - $\bullet~\sim 55~m^2$

Thomas Schreiner (PEG MedAustron)

Overall Project Schedule

- + Dec 2010: environmental impact assessment
- + March 2011: first stone laying
- + Dec 2011: building shell
- $+\,$ Oct 2012: moving to the new building

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 18 / 20

Overall Project Schedule

- $+\,$ Dec 2010: environmental impact assessment
- + March 2011: first stone laying
- + Dec 2011: building shell
- + Oct 2012: moving to the new building

- 2013: accelerator installation and commissioning
- 2014: medical trial operation
- 2015: first patient treatment
- 2016: facility ready for non-clinical research
- 2016: full operation up to 1200 patients/year

MedAustron

- MedAustron will be a "state-of-the-art" centre for ion-beam therapy and non-clinical research centre in Austria
- project is based on international collaborations with experienced partners for the conception and construction
- collaboration with CERN is an excellent example for technology transfer and essential for project progress
- construction phase started with accelerator components and civil engineering – initial operation end of 2015
 MedAustron

Thomas Schreiner (PEG MedAustron)

Thank you for your attention!

Excursion to MedAustron on Wednesday 2:00 p.m.

MedAustron

Thomas Schreiner (PEG MedAustron)

The MedAustron Project

February 11, 2013 20 / 20