

Particle identification system based on dense aerogel

A. Yu. Barnyakov^a, M. Yu. Barnyakov^{a,d}, K. I. Beloborodov^{a,c}, V. S. Bobrovnikov^a, A. R. Buzykaev^a, A. F. Danilyuk^b, V. B. Golubev^{a,c}, V.V. Gulevich^a, S. A. Kononov^{a,c}, E. A. Kravchenko^{a,c}, A. P. Onuchin^{a,d}, K. A. Martin^{a,d}, S. I. Serednyakov^{a,c}, V. M. Vesenev^a

> ^a Budker Institute of Nuclear Physics, Novosobirsk, Russia ^b Boreskov Institute of Catalysis, Novosibirsk, Russia ^c Novosibirsk State University, Novosibirsk, Russia ^d Novosibirsk State Technical University, Novosibirsk, Russia

For experiments with the SND detector at the electron-positron collider VEPP-2000 a new particle identification system is designed, constructed, and put into operation. The system is designed for the separation of π and K mesons up to particle energy of 1 GeV. Cherenkov radiator is dense aerogel with a refractive index n = 1.13. Structurally, the system has the shape of a barrel, divided into 9 sections in the angle φ . Light collection is realized through green wave length shifter on the flat PMT with micro channel plate. Mimimal ionization particle creates a 6—10 photoelectrons signal. In the period 2011-2012, experiments with SND detector at VEPP-2000 were carried out, which allowed to calibrate the identification system on the e, μ , π and K particles produced in e⁺e⁻ —collisions.

Physical program for SND at VEPP-2000

2

- > Precise measurement of the quantity of R = σ (e+e- \rightarrow hadrons) / σ (e+e- $\rightarrow \mu$ + μ -)
- > Study of hadronic channel: $e+e- \rightarrow 2h$, 3h, 4h ..., $h = \pi$, K, η
- > Study of 'excited' vector mesons: $\rho', \rho'', \omega', \omega'', \phi', \dots$
- > CVC tests: comparison of e+e- \rightarrow hadrons (I=1) cross section with τ -decay spectra
- > Study of nucleon-antinucleon pair production, nucleon electromagnetic form factors, ...
- > Hadron production in 'radiative return' (ISR) processes: $e+e- \rightarrow \gamma \gamma^*$, $\gamma^* \rightarrow hadrons$
- > Two photon physics: $e+e- \rightarrow e+e- + X$
- > Test of the QED high order processes $2 \rightarrow 4,5$

Aerogel Čerenkov Counter

Aerogel Čerenkov Counter requirements

Aerogel System Design

- 1. Cylindrical shape: $R=105\div141$ mm
- 2. Walls material: Al, 1 mm thickness
- 3. Consists of 3 segments with 3 separate counters in each
- 4. Solid angle: ~60% of 4π
- 5. Thickness: $\sim 0.09 X_0$

- 1. Scheme: Aerogel + Wavelength shifter (WLS) + PMT 2. WLS position: displaced by $\sim 5^{\circ}$ from counter center 3. Aerogel cover: teflon with a reflectivity of $R \sim 98\%$
- 4. Aerogel thickness: ~31 mm

1. Main purpose – π/K -separation 2. Momentum range: from 300 to 870 MeV/c3. Maximum solid angle coverage 4. Minimal thickness

- 1. 9 independent channels
- 2. Measurements: charge and time
- 3. Charge measurement:
 - Sensitivity: 0.25 pC/ch.
 - 12-bit ADC
- 4. Time measurement:
 - Sensitivity: 50 ps/ch.
 - 12-bit TDC

Detection efficiency

for a particle

π/K – separation power: experimental results

