Planar silicon sensors for the CMS Tracker

upgrade

On behalf of the CMS Tracker Collaboration

Alexandra Junkes
13th VCI Conference
February 14t 2013, Vienna

L

l

——
N N

?




Outline

Introduction to the CMS tracker upgrade campaign
Influence of the production process on sensors
Current above depletion

Depletion Voltage

Charge Collection

Summary

*@ @v" 14.02.2013 A. Junkes, 13th VCI conference



The CMS tracker upgrade

CMS Tracker

Expected radiation depending on position in detector

—e— Charged had.
—e— Neutral had. >100keV
— Sum

Pion/Neutron mixture

Major Upgrade of the LHC ~2022:

x5 in instantaneous luminosity
=> Smaller segmentation needed
=> Triggering at L1

x10 in integrated luminosity:
HL-LHC L,,,=3000 b

=> Radiation hard silicon and suitable
sensor designs needed
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Expected radiation damage in the CMS detector

Damage different for pions and neutrons!
z=0cm ™ —— Charged had.

HL-LHC: L. _=3000 fb""

—e— Neutral had. >100keV | NS [ =R IRIT Lo [E ale]s F
— Sum
Neutrons
Pion/Neutron mixture « 1 MeV (TRIGA reactor Ljubljana)
Protons

» 23 MeV (Karlsruhe cyclotron)

* 800 MeV (Los Alamos proton
facility)

» 23 GeV (PS CERN)

Fluence (particles/cm2)

Mixed Irradiations:

* 23 MeV protons + neutrons

s Make a sensor campaign with candidate materials!
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Selection of Materials and Sensors

Radiation hardness of silicon defined by growth process
» Oxygen content (MCz, FZ, dd-FZ, Epi)
* Influence of doping and sensor thickness
(100 um — 320 um, concentrate on 200 um)
=> Study diodes
=> Obtain: V

C..4 CC, defect parameters

dep? Ileak' end,

Study best design parameters for structured devices
e Strip layout & and influence of sensor thickness

* Influence on n-type and p-type material

=> Strip and multi-geometry strip sensors

=> Obtain: Vg, liea, CC, S/N, strip parameters

Available techniques:
CV/IV, TCT, e-TCT, source measurements, DLTS, TSC

Minimize differences in processing by using one vendor!
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Selection of Materials and Sensors

Radiation hardness of silicon defined by growth process
» Oxygen content (MCz, FZ, dd-FZ, Epi)
* Influence of doping and sensor thickness
(100 um — 320 um, concentrate on 200 um)
=> Study diodes
=> Obtain: V

C..4 CC, defect parameters

dep? Ileak' end,

Study best design parameters for structured devices
e Strip layout & and influence of sensor thickness

* Influence on n-type and p-type material

=> Strip and multi-geometry strip sensors

=> Obtain: Vg, liea, CC, S/N, stip parameters

Available techniques:
CV/IV, TCT, e-TCT, source measurements, DLTS, TSC

Minimize This presentation mainly addresses the strip region
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“deep diffusion” thinning process

Silicon growth process defines [O]: Diffusion of dopants from e deep diffusion

Typically: rear-side -> active volume

Float Zone (FZ): [O]= 1-5x10%6 cm-3 Process requires:

Magnetic Czochralski (MCz): * Heat treatment

[O]= 51017 cm™3 » Introduces [O] into bulk

Epitaxial=5x10%® cm™3 » dd-FZ is O-rich wafer bonding
Oxygen in n-type material In p-type material

——FZ 120um
—0—FZ 200um —O—FZ 200um

FZ 320um —A— FZ 320um
—m— MCz 200um —/\—MCz 200um

—O—FZ 120um

Oxygen concentration (10'® cm®)
Oxygen concentration (10" cm®)

100

Depth (um) dd-FZ wafer: 320 um
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“deep diffusion” thinning process

Silicon growth process defines [O]: Diffusion of dopants from e deep diffusion

Typically: rear-side -> active volume

Float Zone (FZ): [O]= 1-5x10%6 cm-3 Process requires:

Magnetic Czochralski (MCz): * Heat treatment

[O]= 51017 cm™3 » Introduces [O] into bulk

Epitaxial=5x10%® cm™3 » dd-FZ is O-rich wafer bonding
Oxygen in n-type material In p-type material

——FZ120u

watidew d-FZ is oxygen rich!

FZ 320u

e \ced to do SIMS on “normal” FZ

Depth (um)

Oxygen concentration (10'® cm®)
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Impact of dd-process on Doping

Oxygen profiles (by SIMS)

20 40 60 80 100 120 140 160 180
Depth (um)

* Bulk defect analyses revealed material defects (e.g. Thermal Donors TD)
* Thermal Donors generated during processing
* TD influence the doping concentration
ojo
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Impact of dd-process on Doping

Doping profile (from CV)

Oxygen profiles (by SIMS)
- 10"

FZ 120 um
——FZ 200 ym
FZ 320 um
p-type
- - -FZ 120 ym
- - -FZ 200 ym
- - -FZ320um
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20 40 60 80 100 120 140 160 180
150 200 250 300
Depth (um) Diode depth (um)

* Bulk defect analyses revealed material defects (e.g. Thermal Donors TD)

* Thermal Donors generated during processing
* TD influence the doping concentration
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Impact of dd-process on Doping

Doping profile (from CV)

Oxygen profiles (by SIMS)
- 10"

FZ 120 um
——FZ 200 ym
FZ 320 um
p-type
- - -FZ 120 ym
- - -FZ 200 ym
- - -FZ320um
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20 40 60 80 100 120 140 160 180
150 200 250 300
Depth (um) Diode depth (um)

* Bulk defect analyses revealed material defects (e.g. Thermal Donors TD)

* Thermal Donors generated during processing
* TD influence the doping concentration (seen also for MCz material)
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Extraction of depletion voltage
Capacitance-Voltage and Current-Voltage measurement

Capacitance measurement:

Capacitance *0°C(at 1kHz)

- - - Current VAlE
(at 1 kHZ & 455 Hz)

Current (A)

-> Extract depletion
voltage V
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=> Calculate:
Nef'f= 288OVdep/qO d?

Voltage (V)
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Current above full depletion

Diode measurement

FZ200N
FZ200P
FZ320N
FZ320P
MCZ200N
MCZ200P
FZTH200N
FZTH200P
Epi100N
Epi100P
expectation

2
OWMOEOEOESOE

C(Moll = 5.3'10_17A/Cm

annealing: 10@60, scaled for fluences>=1E15 neq with 23 GeV protons;
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measured at -20C, scaled to 20C

1x10" 1x10" 1x10"™ 1x10™ 1x10™

-2
Dy [cm™]

Current taken at V., + 5%

» Independent of material and
irradiation type I/V=a-O®,,
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Current above full depletion

Diode measurement Strip measurements at max 600 V
B FZ200N
© FZ200P = FZ320N
B FZ320N U, = 1-2xU,, or max. 600V o FZ320P
& & FZ320P s 5 FZ320Y
E 10°4| = MCZ200N o e
2 & MCZ200P e FZ200Y
3 B FZTH200N A FTH200N
£ qppq| & FZTH200P + FTiz00v
S ®  Epi100N
5  Epitoop $ Mezao0p
(&) expectation & MCZ200Y
() ) o=532E-
g Apon = 5.3-10%A/cm ' " =501 E-1
3 :
= annealing: 10@60, scaled for fluences>=1E15 neq with 23 GeV protons;
101 measured at -20C, scaled to 20C
1x10"  1x10?  1x10®  1x10"  1x10™® - 5.0x10% 1.0x10% 1.5x10°
Fluence (neq/cmz)
D, [cm'2]
Current taken at V., + 5% Thickness taken from CV measurements on diodes
» Some sensors not fully depleted at 600 V
» independent of material and » Leakage currents of strip sensors higher than
irradiation type [/V= aQ,, expected from diodes
[ [
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Depletion Voltages for 200 um (n-type)

23 MeV protons 23 GeV protons

—— dd-FZ 220um n-typ
—l— dd-FZ 290um n-typ
—— MCz 200um n-typ

—— dd-FZ 220um n-typ
—jl— MCz 200um n-typ
—— FZ 200pm n-typ

[N _|[10" cm3]
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irradiation: p, 23MeV; measured at -20C;

irradiation: p, 24GeV; measured at -20C;
annealing:10min @60C fluences >=3E14, else as irradiated;

annealing:10min @60C fluences <=3E14, else as irradiated;

25 30 0 25 30 0

Dpeq [10™ cm?] Dpoq [10™ cm?]

- MCz and dd-FZ behave similar due to similar O concentration
—> 200 um FZ has lower depletion voltage than MCz 200 um for GeV p
— Proton energy dependence found

[
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Depletion Voltages for 200 um (p-type)

23 MeV protons 23 GeV protons

—&— dd-FZ 220pm p-typ
—&— dd-FZ 290um p-typ
25 - —— MCz 200um p-typ

—&— dd-FZ 220um p-typ
—h— MCz 200um p-typ
—&— FZ 200pm p-typ

12 -3
|Naﬁ| [10" cm™]

12 -3
IN_ [ [107 cm™]

Vgept [V (200pm)
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irradiation: p, 23MeV; measured at -20C;

irradiation: p, 24GeV; measured at -20C;
annealing:10min @60C fluences >=3E14, else as irradiated;

s annealing:10min @60C fluences <=3E14, else as irradiated;
25 30 0 25 30 0
@poq [10™ cm?] @poq [10" cm?]

—> p-type rise from start after 23 MeV protons
— Acceptor removal seen for 23 GeV protons
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Material comparison

23 MeV protons 23 GeV protons

—- dd-FZ 220pm n-typ —— dd-FZ 220um n-typ
—&— dd-FZ 220pm p-typ , —— dd-FZ 220um p-typ
—— MCz 200um n-typ ’.’ —— MCz 200um n-typ
—h— MCz 200um p-typ '.' —h— MCz 200um p-typ
—— FZ 200um n-typ
—h— FZ 200pm p-typ
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irradiation: p, 23MeV; measured at -20C;

irradiation: p, 24GeV; measured at -20C;
annealing:10min @60C fluences >=3E14, else as irradiated;

annealing:10min @60C fluences <=3E14, else as irradiated;

25 30 °

” 25 30
Dpeq [10' cm?] Dpq [10™ cm?]

— p-type depletion voltage higher after 23 MeV proton irradiation
— Depletion voltage very similar after 23 GeV proton irradiation

[
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Expectation for mixed irradiations

Neutron + 23 GeV proton irradiation

—e— Charged had.
—— Neutral had. >100keV
— SUM

Pion/Neutron mixture
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* Leakage current increases in accordance with received @,

* FZ: damage accumulated

* MCz-n: damage compensated

=> Donors introduced in p irradiation compensated by acceptors introduced in
n-irradiation
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Mixed irradiations: 23 MeV Protons

* dd-FZ 220 um n-type
+ dd-FZ 220 um p-type
# MCz 200 um n-type
+ MCz 200 um p-type

(o2
o
o

q
o
=)
V gep [V] (2001m)

(=2
o
(=]

Annealing step: 10 min at 60 °C
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Mixed irradiations: 23 MeV Protons +
Neutrons

* dd-FZ 220 um n-type
+ dd-FZ 220 um p-type
# MCz 200 um n-type
+ MCz 200 um p-type

(o2
o
o

N
o
=)
V gep [V] (2001m)

(=2
o
(=]

n+p mixed

Annealing step: 10 min at 60 °C - Fluences add up
[ compensation effect
- Test with 23 GeV p

[ [
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Vi, = 600V

)

- n-type sensors:
B dd-FZ 320 um
- p-type sensors:
p-stop
A dd-FZ 320 um
p-spray
v dd-FZ 320 um

Vii.s =900V

Charge Collection from strip sensors

- n-type sensors:

B dd-FZ 320 um

- p-type sensors:

p-stop

A dd-FZ 320 um
p-spray

v dd-FZ 320 um

.
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5.0x10" 1.0x10" 1.5x10"° 5.0x10™ 1.0x10"

Fluence (neq/cmz) Fluence (n, /cm’)

Measurement: B-setup with Alibava read-out

- FZ320 collects more charge up to ®,,=1x10"> cm
* No significant difference between 200 um and 300 pum above

e (I)e =1x10"° cm-2
[ d
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Charge Collection from strip sensors

= 600 V V,.,. = 900 V

blas

- n-type sensors:
m  dd-FZ 320 um
= dd-FZ 200 um
= MCz 200 um
- p-type sensors:
p-stop
A dd-FZ 320 um
A dd-FZ 200 um
A MCz 200 um
p-spray
v dd-FZ 320 um
v dd-FZ 200 um
v MCz 200 um

- n-type sensors:
®  dd-FZ 320 um
®  dd-FZ 200 um
= MCz 200 um
- p-type sensors:
p-stop
A dd-FZ 320 um
A dd-FZ 200 um
A MCz 200 um
p-spray
v dd-FZ 320 um
v dd-FZ 200 um
v MCz 200 um
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5.0x10™ 1.0x10"® 1.5x10" 5.0x10™ 1.0x10" 1.5x10"

Fluence (n, /cm’)

Fluence (n, /cm’)

Measurement: B-setup with Alibava read-out

- FZ320 collects more charge up to ®,,=1x10"> cm
* No significant difference between 200 um and 300 pum above
= ®.,=1x10" cm2

‘EEM
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Summary

* Materials overall of very good quality
» At ®,.=1.5x10" cm still signal on most 200 um strip
sensors of about 10 ke
* No significant difference between 200pum and 300um above
D, =1x1 01> cm2
* Excess of leakage current of strip sensors compared to diodes
* No compensation effect observed in mixed irradiation

* Deep diffusion process introduces [O] into bulk material
» All materials behave very similarly due to similar O-
concentration
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Not addressed in this presentation...

Measurements on Multi-Strip and Multi-Pixel ongoing
e Evaluation of Strip parameters

 Test beam results

Defect analysis still ongoing

 Comparison of defects in different materials

* Comparison

Simulation efforts very strong

* Simulation of strip parameters ongoing

* Trap model for radiation damage under development
Double metal layer structures and new designs
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MCz after 23MeV and 23 GeV Protons

Red laser TCT illumination from front: | = Charge injected close to p+ electrode
— Electrons drift through bulk to backplane

23 MeV protons 23 GeV protons

High field
at rear side

200\;\ Hight field at

front side
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Thermal Donor concentration in MCz

* Highest concentration of Thermal Donors in MCz
* Evaluation difficult due to inhomogeneity in FZ

Depth corresponding to ~90 um

Thermal Donor |- = -FZ 120 um p-typ
- — -MCz 200 um p-typ
—— MCz 200 um n-typ

1,2x10"

1,0x10"

8,0x10"

6,0x10"

4,0x10"

({\
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©
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R
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w
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2,0x10"
——FZ 200 um p-type

- = -MCz 200 um p-type
—— MCz 200 um n-type
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0,0
100
Temperature (K)

* More homogeneous than in dd-FZ

s * TD levels the doping concentration
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Loss in CCE due to “under-depletion”

Depletion Voltage Charge Collection Efficiency at 600 V

U, =600V
p-type sensors

p-type sensors

p-stop

A dd-FZ 320 um
A dd-FZ 200 um
A MCz 200 um
p-spray

v dd-FZ 320 um
v dd-FZ 200 um
v MCz 200 um

p-stop

A dd-FZ 320 um
A dd-FZ 200 um
A MCz 200 um
p-spray

v dd-FZ 320 um
v dd-FZ 200 um

proton irradiated
proton irradiated

S
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Charge Collection Efficiency (%)

[ [Id 2 B

6 9 . 5.0x10™ 1.0x10"

Fluence (1e14 neq/cmz) Fluence (neq/cmz)

» FZ 200 um: Vy,,= 950V at ®,,=1x10" cm= > -20 %
* Loss in Charge Collection due to ,,under-depletion”
* Loss in Charge Collection due other effects: additional 20%
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Loss in CCE due to “under-depletion”

Depletion Voltage Charge Collection Efficiency at 600 V

FZ320N
FZ320P
FZ320Y
FZ200N
FZ200P
FzZ200Y
FTH200N
FTH200P
FTH200Y
MCZ200N
MCZz200P
MCZ200Y

5.0x10 1.0x10 ° 1.5x10 ° . 5.0x104 1.0x10° 1.5x10°
Fluence (n.,/cm?)

Fluence (nz,/cm?)

» FZ 200 um: Vy,,= 950V at ®,,=1x10" cm= > -20 %
* Loss in Charge Collection due to ,,under-depletion”
* Loss in Charge Collection due other effects: additional 20%
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Annealing Study on Charge Collection

®,,=7x10* cm, Annealing time projected to room temperature

V.= 600V V,...= 900V
Annealing duration (d) Annealing duration (d)

15 20 25 30 35 100 200 300 0 5 10 15 20 25 30 35 100 200 300

U =600V U =900V
¢ =7E14 n,/om? ¢ ="7E14 ny /cm?

electron signal (e°)
electron signal (e°)

400 600 800 2000 4000 6000 8000 10000 0 200 400 600 800 2000 4000 6000 8000 10000

Annealing duration (h) Annealing duration (h)

* Electron signal of FZ320 sensors increases during the first 15 days of annealing at RT
(beneficial annealing), afterwards continues decrease (reverse annealing)

£t * 200 pm sensors remain nearly constant
[ [
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FZ320N
FZ320P
FZ320Y
FZ200N
FZ200P
FZ200Y
FTH200N
FTH200P
FTH200Y
MCZ200N
MCZ200P
MCZ200Y
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Irradiation Study: Signal-to-noise ratio

V,,.= 900V
FZ320N
FZ320P
FZ320Y
FZ200N
FZ200P
FZ200Y
FTH200N
FTH200P
FTH200Y
MCZ200N
MCZ200P
MCZ200Y

[
a
8
[ J
O
@
A
A
A
*
&
&

5.0x10" 1.0x10" 5.0x10" 1.0x10"

Fluence (n o, /cnP)

Fluence (n, /cn?)

» S/N higher for FZ 300 um up to ®,,=7x10% cm™

* No significant difference between 200 um and 300 um at higher fluences

« Signs of “microdischarges” found in n-type sensors (only!) above
®.,=1x10"> cm= (further investigation required)
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Materials: Process

Material defects found in O-rich material

Crystal defects in FZ (DLTS results)

E(61K)

— P-type hole injection (T, =200 ms)
35x10" 4 —— N-type electron injection(T =20 ms)

120 um

3.0x10° 7 H(220K)

2.5x10""

Defect concentration (cm™)

200 um
2.0x10"" 320 um

1.5x10"" ;

T T T
100 110 120

——N120
E(61K) —N200
—N320

1.0x10""
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5.0x10'° 4

H(160K)

0.0 f T = T 3 T
120 150 180 210 240 270

120 um

Temperature (K)

Defect concentration fom™®)

H(220K) in p-type: Current generator at 0.44 eV 200 um
E(61K): Thermal donor, increases n-type doping 320 um

T T T T
90 100 110 120

=~ Correlation of [O] and defect concentration Temperature (K)

2
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Strip parameters

FTH200N Irradiation Study (MeV+GeV)

WCZ0N Bias resistance R__,, (600V)

MCZ200P poly
MCZ200Y

FTH200N *  Measurements in non-
FTH200P

FTH200Y irradiated case done at 20°C
I and scaled to -20°C
no significant differences
between MeV and GeV proton

5.0x10" 1.0x10% 510 irradiation

Fluence (n, /cm?)

Q6B DPOOOBD D

]
=
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o
c
3
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o
Q
(2]
R
m

. Rpoly: ~10% increase after initial irrad., then constant

drops strongly with irrad.; lowest value @ 1.5e15n,,/cm? still about
b MQcm

* C;: minor variation (10 fF/cm or 2%) and no systematic dependence on
D obsen/ed thick sensors have about 10% higher C,

int

» C.: minor variation (~3%) over fluence range; p-type sensors have ~7%

hlgher C., trend observed that p-type increase, while n-type decrease at
same fluence (?)
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Radiation induced defects (23 GeV p)

MCz200N, ®_,= 1 x 10! cm? FZ200N, .= 1 x 10! cm™

non-irradiated
as irradiated
- — -6 min@80 °C
—o= 15 mln@80 C

— non-irradiated
— as irradiated

- - -8min@80 °C
—-—-15 min@80 °C

5 E(61K) +10,?
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X
o

b1-correlator signal concentration [10''cm™]
SSNE(30K)?

150 200

temperature [K] temperature [K]

Defects similar to normal spectra, except for E(61K)

MCz200N dominated by E(61K)
Low contribution in FZ200N
Dependence of defects on sensor depth should be investigated
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No defects found in old CMS FZ 300 um

Ug=-20V, U ,=-0.1V, t,=200 ms * Has HPK changed the processing?
» For sure... but what is the
T e reason for the defect

ermal Donor Injection:

MCz200N generation?
e-
h+/e-

CMS FZ 300 um

CV,T\
£
N=
©
c
Roy
(2]
w
l_
-
(m)
_Q‘_

H220K?

100 150 200
Temperature (K)

Is the processing responsible for the introduction of defects?
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Part |: Influence of the
production process on sensors

Comparison of MCz200N and CiS MCz Comparison of MCz200N and FZ200N

23 MeV protons

N

o
=]
(=]
o

23 GeV protons
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=]
)

IN_,| [10"2 cm]

N
o

600
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10 4

400
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.F
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©
—
%
Z

200

pletion voltage normalized to 200um [V]

& HPK MCZ200N

SU— ﬁt (C=2.66X1O.‘scm2. l‘=1 69X1020m‘) | in i i <=3E14, else as irradiated; measured at -20C

() RDsoMCz | T [ IR [ R \2\5\ L \3\0\14\ \-o
-+« - fit (c=6.81x10""cm’, $=0.92x10°cm") By 10" e
LN B S B S B S B S S S

8 10 12 14 16 18
@ [10"em?)
eq

100 o
©

Difference in V., found FZ200N does not “type invert”

The name of the material does not always reflect the behavior!
We need to understand the material before we order!
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Irradiation procedure...

n-lrradiation

n-lrradiation

p-Irradiation Single particle p-lrradiation Mixed particle
damage

Initial measurements of all parts
Irradiation with n/p

Short annealing 10min @ 60°C
Measurement of devices
Irradiation with p/n

Short annealing 10min @ 60°C
Annealing studies
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No defects found in FTH200N

Ug=-20V, U ,=-0.1V, t,=200 ms * FTH200N supposedly the
material with the lowest [O]
* SIMS not yet available

Thermal Donor Injection:

MC2z200N * Process induced defects only
e- found in O-rich material

. e-/h+
? FTH200N e
5 e * Deep diffusion introduces O but
8 - - e+ most likely not the defects
2 : .
I * Defects very likely introduced
E during processing in O-rich
e H220K? material

ionale

spiele

100 150 200

Temperature (K)

791?

~ ~
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Deep Level Transient Spectroscopy

DLTS principle (electron traps) Multi shot technique during T-scan:

[ 1] Quiescent reverse bias (Vi) 1. Diode under reverse-bias

2. Filling of traps with charge carriers at various T
3. Emission from filled traps - change of capacitance
 Capacitance transients recorded as function of T
» Transient follows: AC(t,T) = AC, exp(-e_(T)- t)
* Emission from transient shape

C . AC

* Concentration: N, =2N, —

0
Thermal emission of carriers (VR)

e ¥ s assasa temperature T
Ec s

»

high T

Capacitance
transient

>
(@]

O
=
!

at various temperatures

capacitance transients monitored

(-]

M. Moll, PhD thesis 1999, Uni Hamburg
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Unfortunate NIEL violation

36824 vacancies 4145 vacancies 8870 vacancies

-1
L.

1MeV n => Large damaged regions
23GeV p => Point defects and cluster

10MeV p => high number of point

e defects and less cluster defects
. 0.5
X (um) X (um)
Simulation: Distribution of vacancies after ®,,=10** cm™
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Point Cluster defects
defects

Acceptors “VP”, IP H(116K), H(140K), H(151K)
Donors BD E(30K)+?
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Energy distribution for LHC

* neutron

* neutron
®pion T Sooon Pion damage dominant
In Inner region

D
=
N2
w
)
=)
=
4l

O proton

Pion energies in few
hundred MeV to few

GeV

* neutron
@ pion
O proton

* neutron
@ pion
O proton

Ed®/dE (cm™)

R=40-65cm

A. Junkes, 13th VCI conference
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Impact of radiation damage

N_ calculsted by the device model
* Neutron irradiation

e Similar material

= Similar slope after

initial doping
concentration was
overcome

S. Watts, RD-2 1993 Weutros Ausnce (» em™)

Should affect p-type at high fluences

e
[ [
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Depletion voltage: LHCb VELO

Effective depletion voltage vs fluence

. LHCb VELO Preliminary

SI6pe would suggest strong
increase of V, for p-type
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—e— N-type sensors

10 —a— P-type sensor
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Unfortunate NIEL violation
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Impact of defects on detector properties

Determined by Shockley-Read-Hall statistics

conduction band

E

energy + _ ©

levels Donor

electrons

— . holes

Acceptor :

E
. \Y
donor & acceptor generation & Vvalence band

) trapping o
generation recombination
Charged defects (at RT) Deep defects Levels close to midgap
> Netts Viep -> CCE > lye, (NOISE)
(Acceptors in the lower half | (Shallow defects do | (Defect levels close to midgap
and donors in the upper not contribute due | most effective)
half of the band gap) to de-trapping) => Cooling during operation helps!
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Thermally Stimulated Current technique

TSC principle Single shot technique:

1. Filling of traps with charge carriers at low T (<30 K)
— Filling (majority carriers with zero bias, majority and
minority carriers by forward bias, light)

* Signal as function of temperature
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temperature (K)

2. Recording of charge emission (e, ,) from
filled traps during constant heating

3. N,from integral of TSC-current 4 20

tsc-signal (pA)

!Eég
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