3-Dimensional ASIC Development at Fermilab

Erik Ramberg,

for the ASIC group Fermilab

14 February, 2013 Vienna Instrumentation Workshop

Performing the fastest signal processing possible means we have to leave the 2 dimensional world behind

- Industry and government initiated development of vertical integration, since Moore's law would not extend beyond ~ 2020
- What is 3D vertical integration?:
 2 or more layers ("tiers") of active semiconductor devices that have been thinned, bonded and vertically interconnected to form a monolithic circuit
- This type of integration improves circuit performance:
 - No fine pitch bump bonds
 - Reduces R, L, C for higher speed
 - Reduces chip I/O pads (less dead area)
 - Technology of each layer can be separately optimized
 - Reduces interconnect power and crosstalk
 - Can give more transistors per cm²
- Processes now available commercially

Conventional MAPS 4 Pixel Layout

3D 4 Pixel Layout

3D ASIC Applications

- We are just at the beginning of exploring 3D ASICS.
- Directions to pursue include:
 - 3D sensors
 - High density pixel (ILC type)
 - LHC track trigger
 - X-ray imaging with time tag
 - Pixel chip size reduction
 - B factory Vertex
 - CMOS/CCD integration
 - SiPM with per pixel digital readout
 - 3D associative memories for triggering

ASIC Resources at Fermilab

- ASIC Group is part of Particle Physics Division Electronic Engineering Department
- 6 ASIC designers (3 PhDs)
 - 2 senior project leader level
 - 1 engineering physicist
 - 1 test engineer
 - 2 technicians
 - + PCB drafter depending on needs
 - + occasional support from other resources within PPD/EED, Computing Division and other departments at Fermilab
- Design Software:
 - <u>Cadence</u> main frame
 + Mentor Graphics Silvaco (and Magma + Tanner)
 - Shifting from Cadence IC5.1X to IC6.1X (all new designs under IC6.1X OA) – (underway),
 - Migration from Eldo (Mentor Graphics) to Analog-Mixed-Mode Simulation (AMS) with Spectre (Cadence) – (2011),
 - Solicitation for: ASSURA PVS, VSR and VDI (budget dependent) – to be capable of 65nm flow - (2012),

- ASIC test lab spaces + "clean room" (probe stations /one capable 8"/ and measurement instruments)
- + 2 labs (FlexRIO National Instruments systems and test equipment + lab. radioactive sources)
- + robotic chip testing station (upgrade)
- + manual bonding station
- + PCB components mounting lab

History of Fermilab Initiatives in 3D

- 2006: FNAL participates in 2 multi-project-wafer runs organized by MIT-LL and submitted the VIP (vertically integrated pixel) chip, driven by ILC specs for vertex pixels.
 - MIT-LL: 3 tier fully depleted SOI process
 - Tiers communicate with Through Silicon Via's (TSV)
 - Proof of 3D principle
- In 2009, FNAL initiated and organized 3D-IC MPW for HEP and related fields
 - Standard CMOS foundry process (0.13 μm), wafers fabricated by Global Foundries
 - 3D processing and stacking done by Tezzaron
 - VICTR chip (vertically integrated CMS tracker for sLHC)
 - VIP2b (ILC pixels, 8-bit digital time stamp)
 - VIPIC (x-ray spectroscopy)
- In 2011, 3D design kit built by CMP and adopted by MOSIS, based on Global Foundries 130 nm process, using data from Tezzaron, NCSU, Fermilab and others
- Helped develop new handling techniques
 - Thinned detectors
 - Laser annealing of the backside contact (with Cornell)
 - Tested interconnections
 - Cu-Cu thermo-compression
 - Cu-Sn interconnects
 - Ziptronix Oxide Direct Bond Interconnect (DBI)
- Other projects that use 3D paradigm:
 - Silicon on Insulator (SOI) Mambo imaging chip with KEK/OKI
 - Large area arrays with active tiles
 - 3D version of Silicon Photomultiplier
 - VIPRAM Stacked Associative Memory for fast triggering

→Significant difficulties encountered at every step

3D-IC Techniques

- Technology first explored at MIT-LL
- Not only good for electronic ROCs but also for attaching detectors to readouts
- Through Silicon Vias (TSV) for vertical wafer/chip connectivity Vias at micron level
- Bonding: Oxide, polymer, metal, or adhesive strengthened (Wafer-Wafer, Chip-Wafer, Chip-Chip)
- Wafer thinning: aggressive and precise
- Back-side metallization and patterning

Oxide Bonding of Sensors and Chips

- Ziptronix Direct Bond Interconnect (DBI) is based on formation of oxide bonds between activated SiO₂ surfaces with integrated metal:
 - Silicon oxide/oxide initial bond at room temp. (strengthens with 350 deg cure)
 - Replaces bump bonding
 - Uses standard IC processes chemicalmechanical polish and metalization
 - Chip to wafer or wafer to wafer process
 - Creates a solid piece of material that allows bonded wafers to be aggressively thinned
 - ROICs can be placed onto sensor wafers with <10 µm gaps - full coverage detector planes
 - ROICs can be placed with automated pick and place machines before thermal processing - much simpler than the thermal cycle needed by solder bumps

"VIP" = Vertically Integrated Pixels - 3D Chip for ILC Vertex

- Goal demonstrate ability to implement a complex pixel design with all required ILC properties in a 20 micron square pixel
- Previous technologies limited to very simple circuitry or large pixels
- 3D chip design in MIT Lincoln Labs 0.18 um SOI process.
- Chip designed for ILC Vertex
 - Low power front end
 - Digital and and analog time stamp
 - Sparse scan readout
 - 24 micron pitch or better
- Initial submission had low yield and marginal functionality due to MIT-LL process issues.
- Second submission with a more conservative design worked well. Converted to 0.13 micron CMOS for 3D Tezzaron run VIP2b

Another Application of 3D ASIC Circuits – High Luminosity LHC

 $H \rightarrow ZZ \rightarrow \mu\mu ee$ for different luminosities in CMS:

Complexity is handled at higher (and slower) trigger levels with software on CPUs. This works with low luminosity, but will be compromised at the HL-LHC. Raising threshold does not significantly help.

Several avenues for solving this (and other high speed) problems are being worked on in the 3D ASIC group at Fermilab

"VICTR" = Vertically Integrated Chip Tracker - an LHC track trigger at Level 1

Must be much faster than a L2 trigger. This is especially hard for a silicon-based tracker with potentially huge data volumes

Principles:

- The trigger must be designed into the tracker geometry from the start
- Good Z resolution to reduce background event candidates. Minimize the tracks used for isolation.
- Design the system geometry so all operations are "local" minimize data transmission. Use hierarchical design to limit overall data flow
- Limit rate at the front end by using correlated layers (x20 rate reduction)

Simplified Functional View of CMS Demonstrator Chip (VICTR)

- Serial RO of all top & bottom strips in coincidence, feeding into a 3D type of ASIC in the middle.
- Uses slightly modified frontend from FEI4 (ATLAS) with a custom serial RO architecture
- Low-power, with in-situ processing.

3D Module Data Flow in VICTR

ROC sees signals from top and bottom sensors - all correlations are local

Collaborating with: LBNL, BNL, UC Davis, Cornell, AllVia, Tezzaron, Ziptronix, VTT Top sensor analog information flows through interposer to IC mounted on bottom

Long strips on top provide r-phi to minimize number of interposer connections

Short strips on the bottom provide Z resolution

ROIC amplifies, discriminates. forms stubs and manages pipeline

Double Stack Bonding Bonded to sensor chips from BNL

VICTR Test Results

- Initial alignment problems in fabrication
- We now have well-aligned functioning chips from wafers delivered in June
- Good thinning and TSV contact and backside metalization
- Tests using NI flex rio systems give good

"VIPRAM" = Vertically Integrated Pattern Recognition Associative Memory

Using 'Content Adressable Memory' (CAM) technology for use in collider detector triggering

Pattern recognition for tracking is naturally a task in 3D architecture

First VIPRAM prototype in 2D submitted in Dec. 2012

The challenge: Increase the patterns density by 2 orders of magnitude and increase the speed by a factor of $>\sim$ 3, while keeping the power consumption more or less the same

"VIPIC" = Vertically Integrated Photon Imaging Chip A 3D ASIC for photon correlation

- Detector: Si 500 micron thick sensors for soft X-rays
- Low-power, time-of arrival and charge sharing corrected intelligent pixel detector
- Immediate application in producing science with light source
- no comparable device available (2D autocorrelation @ ~10 microsec or better)
- Develop practices and techniques applicable later in devices for HEP
- Intelligent pixels (raw data not sent; only on-detector inter-pixel processed data)

O. G. Shpyrko et al., Nature 447, 68 (2007)

Sensor wafer for all 3D pixel chips (designed at Fermilab fabbed at BNL),

Fermilab designs for VIPIC

Digital part of pixel

Analog part of pixel

Chips have been tested with downloaded pattern and performed very well. Now waiting on sensor bonding

- Demonstrates ability to separate digital and analog layers, and bonding them together
- 64 × 64 array of 80 μ m²; shaping time τ_p =250 ns, power ~25 μ W / analog pixel, noise <150 e⁻
- Two dead-time-less modes of operation (64 × 64 matrix / in 16 sub-matrices of 4 × 64 pixels):
 1) timed readout of hits acquired at low occupancy (address and hit count) σ_t=10µs
 2) imaging counting of events
- Sparsified readout with priority encoder circuit (hit pixel address readout only)

Silicon-on-Insulator (SOI) development

- SOI device contains a thin (200nm) silicon device layer mounted on a 'handle' wafer, separated by an insulating buried oxide layer. Handle wafer can a high resistivity detector.
 - First studied in 1993 by CERN/CPPM/IMEC
 - 2000s Crakow group in-house fabrication
- Fermilab collaborates with KEK and OKI/LAPIS (industrial partner) under a Japan-US agreement (MoU 2007) on monolithic SOI devices.
- Also working domestically with American Semiconductor through SBIR grant
- Collaborate with Cornell:
 - device simulation
 - development of laser anneal process

Develop MAMBO = "Monolithic Active pixel Matrix with Binary cOunters"

SOI Pixels: Fermilab process improvement

- Triple role of shielding between the SOI electronics and detector layer:
 - to avoid back-gating in transistors (DC potential underneath the BOX shifts threshold of transistors),
 - to avoid injection of parasitic charges (from the SOI electronics to detector),
 - to avoid strong electric field in BOX (that results in accelerated radiation damage).

SOI pixels: Results

 Starting in 2006, a sequence of counting MAMBO chips were developed, gradually improving the circuitry and understand better the technology

¹⁰⁹Cd source (22keV X-rays) On MAMBO-5

Active Edge Sensors

- An outgrowth of 3D detector development by Sherwood Parker and collaborators
- Deep reactive ion etch of silicon to create a nearly vertical trench with smooth edges avoids charge generation centers
- Filled with doped polysilicon or implanted and annealed to create a "backside" electrode
- UC Santa Cruz/Naval Research Lab is exploring an alternate process involving cleaving and atomic layer deposition
- The goal of this work is to combine active edge technology with 3D electronics and oxide bonding with through-silicon vias to produce fully active tiles.
- These tiles can be used to build large area pixelated arrays with good yield and low cost because the only bump bonds are large pitch backside interconnects.
- We are building a demonstration array including active edge sensors, oxide bonded wafers, and "damascene" dummy readout wafers
- Cornell is doing simulation work to support the design phase

VTT Active Edge Sensor

Summary

• 3D ASICs provide all the benefits you would expect from expanding into a new dimension:

- Higher read out speed
- Integrated analog and digital layers
- Analysis or triggering decisions can be made at the detector level
- Edgeless tiling of sensors enabled

 Fermilab has been involved in 3D ASIC development since 2006 and has been instrumental in developing accepted techniques since then

• We are concentrating now on developing specific applications, including new track triggering designs for HL-LHC, fast associated memory for L1 triggering, ILC type high pitch detector readout and time correlated counting detectors for X-ray science.

Thanks to Collaborators:

- SOI KEK, Lapis Semiconductor (Japan), American Semiconductor, Cornell
- Thinning and Laser Anneal Cornell University, American Semiconductor
- CMS Track Trigger Brown, Boston, CERN, Cornell, UC Davis, UC Santa Barbara
- VICTR Chip Cornell University, Brown U.
- VICTR2 Chip UC Santa Barbara, Brown U.
- CMS Pixel CERN, Torino, Perugia
- Mechanics and Integration UC Davis, Yale, Cornell, SLAC
- Active Edge/3D Cornell, SLAC, Hawaii, Brown, UCSC, NRL
- Future Lepton Colliders SLAC, UCSC, NIU, Carnegie-Mellon, Lecce
- INFIERI Recently funded EU framework program for 3D/data flow R&D