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Outline 

 Motivation – inner zone of the TRD detector of CBM experiment @ FAIR 

 High Counting Rate TRD detector development  – short history 

 Two dimensional position sensitive TRD prototype 

 Fast Analog Signal Processor (FASP) developed as dedicated FEE  


55Fe source tests 

 In-beam measurements at CERN-PS 

 Toward a TRD basic cell for the inner zone of CBM-TRD detector 

 Design of the inner zone of the CBM-TRD detector 

 Conclusions & Outlook 
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• 107 Au+Au  reactions/sec & 1000 tracks/event 

 

• identification of leptons and hadrons  

 

• fast and radiation hard detectors 

 

• self-triggered readout electronics 

 

• high speed data acquisition and high 

performance computer farm for on-line event 

selection 

CBM experiment at FAIR 
•next generation fixed target experiments 

•systematic exploration of QCD phase diagram in the region of  high 
baryon densities in A+A collisions from  2 – 45 (35) A·GeV beam energy 
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The CBM experimental setup 

• electron ID: RICH & TRD  

    suppression  104 

• muon ID: absorber + detector layer sandwich  

   move out absorbers for hadron runs 

RICH 
TRD 

TOF 
ECAL 

magnet 

absorber + 

detectors 
STS + 

MVD 

Intensive detector R&D activity  

MUCH 

PSD 
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The CBM-TRD requirements 

TRD subdetector – possible scenario: 

   3 stations @ 4.5, 6.75, 9 m from target  

 

   Highly granular and fast detectors which  

     can stand the high rate environment up to   

     105 part/cm2 ·sec 

 

 Tracking of all charged particles with a 

position resolution of: 

 - 200 – 300 m across the pads 

        - 3 – 30 mm  along the pads 

 

 Identification of high energy electrons ( 

> 1000) with a pion rejection factor  > 100 

@ 90% electron efficiency • 585 m² surface 

• 708 modules 

• 785.408 channels 

  

• matching RICH & 

  TOF acceptance 

TRD 
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2004 - first HCRTRD  prototype 

HCRTRD 55Fe source 

PASA 

High counting rate in-beam test  

SIS, GSI – Darmstadt, proton = 2 GeV/c  

Single – MWPC 2 x 3 mm gas gap, 2.5 mm anode pitch 

1 x 6 cm2 rectangular pad area 

Short History 

e/π discrimination @ 1 GeV/c: 

  10 layers configuration = 2.9 % 

 Can be improved using a  better  

   radiator from the point of view 

  of the transition radiation yield 

  

1 GeV/c, Rohacell foam radiator 

M. Petris et al.,  NIMA 581(2007), 406 

2006 - second HCRTRD  prototype 
Double – MWPC 2 x 3 mm gas gap, 2.5 mm anode pitch 

0.5 x 1 cm2 rectangular pad area 

 Readout electrode 
made from kapton foil 
of 25 m;  rectangular 
pads and signal traces 
are etched  on both 
sides in the 0.3 mm 
evaporated Cu layer. 

 In-beam test SIS, GSI – Darmstadt  

M. Petrovici et al., NIMA 579(2007), 961 

e/π discrimination @1.5 GeV/c: 

1800 V + Foil (20/500/120)  @ 6 TRD layers  = 0.7%  

 

High counting rate in-beam test 2 GeV/c proton 

Transmission of  

55Fe X – ray = 84% 
σ = 8.6% 
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Two dimension position sensitive double -sided 
TRD prototype version 

- 2 MWPC readout by the a common 

  double sided pad plane 

- readout electrode:  Cr(20 nm)/Al(200nm)   

on 25m kapton foil   

- triangular shape of readout pads 

- readout cell area (1 x 8)/2 cm2 = 4 cm2 

Two versions: 

 DSTRD-V1 of 3 mm anode – cathode gap 

 DSTRD-V2 of 4 mm anode – cathode gap 

Readout pad plane electrode 

1.  cathode frame 

2.  cathode plane – 25 m Al kapton foil  

    stretched on a 8 mm rohacell plate 

3.  anode wires (20 m W/Au)  + frame 

4.  distance frame 

5.  36 cm x 8 cm readout electrode: 72 triangular pads  

1 
2 

3 

4 

5 

1 

2 
3 4 
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First version – FASP-VO 

- Designed in AMS CMOS 0.35 μm technology 

- Gain: 6.2 mV/fC  

- Selectable shaping time (ST): 20 ns and 40 ns 

- Noise (C
in

 = 25 pF): 980 e-@40 ns ST and 1170 e-@20 ns ST  

- Power consumption = 11 mW/channel 

- Variable threshold  

- Self trigger capability 

- 8 input/output channels 

 

  Fast Analog Signal Processor - FASP 

fast semi-Gaussian output signal 

peak sense output signal 

FASP - V0 

FASP 
motherboard 

FEB 

Analog channel outputs 
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80%Ar+20%CO
2 

55Fe source  tests 

  

 

 
     σ = 8.3% 
 
    HV=1400 V 

 
 
σ = 10% 
 
HV=1750 V 

 
 
σ = 10.4% 
 
HV=1800 V 

DSTRD-V1 Anode signal  
CSA Amplifier 

DSTRD-V2 Pad signal 

FASP-V0: fast Gaussian output 

DSTRD-V2 Pad signal 

FASP-V0:  flat top output 
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Two dimension position sensitive single – sided 

                     TRD Prototype - SSTRD 
 - single MWPC + 4 mm drift region 

- 4 mm anode – cathode gap 

- 3 mm anode wire pitch 

- 1.5 mm cathode wire pitch 

- drift electrode = Al kapton foil   

   stretched on 8 mm Rohacell plate 

 -  readout electrode  300 μm pcb 

 - triangular shape of readout pads 

 - readout cell area (1 x 8)/2 cm2 = 4 cm2  

Readout  
electrode 

Drift  
electrode 

1 

2 
3 

4 5 

7 

6 
1. drift electrode frame 

2. drift electrode  

3. cathode wires  + frame 

4.  anode wires  + frame 

5. distance frame 

6. readout electrode 

7. honeycomb panel 

36 cm x 8 cm 
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σ = 8% 
 

gas system 

in 

out 

CSA anode 

   signal 

HV 

SSTRD Pad signal 

FASP-V0: flat  top output 

SSTRD Anode signal 
CSA Amplifier 

 

80%Ar+20%CO
2 

FASP-V0 pad 

   signal 

55Fe source  tests 

 HV
A
=1900 V 

 HV
D
=  300 V 

σ = 10% 

HVA=1550 V 

HVD=  300 V 
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Detector Garfield simulation – drift time study (I) 
Double MWPC TRD prototype (4 x 4 mm) 

Drift lines 
Isochrony lines 

Drift time projection  
along the gas thickness 

Maximum drift time 
Percentage of the volume with  
a drift time larger than 100 ns  

80%Xe+20%CO
2 
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Detector Garfield simulation – drift time study (II) 
Single MWPC TRD prototype (2 x 4 mm+4 mm) 

Drift lines 
Isochrony lines 

Drift time projection  
along the gas thickness 

Maximum drift time 
Percentage of the volume with  
a drift time larger than 100 ns  Readable drift volume  
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CADENCE simulation 

- use as input detector signal simulated with Garfield  

- 40 ns FASP shaping time  

- linearity of the FASP response for hits  
with an input charge in the range 15 fC-170 fC  
having the ionization clusters randomly  distributed 
in a time window of 100 ns for  DSTRD and of  

250 ns for SSTRD 

-  uniformity of the FASP response for  
hits with the same input charge of 65 fC  and 
having the ionization clusters randomly distributed  
in a time window of 100 ns for DSTRD and of  

250 ns for SSTRD 



 
15 

 
Mariana Petris, 13th Vienna Conference on Instrumentation, 11 – 15 February 2013   

CBM common experimental set-up of in-beam test 
performed @ CERN T10/PS beam line 

- Cherenkov detector (e/π identification) 

- STS prototype 

- Plastic Scintillator (beam trigger) 

- RICH prototype  

- 3 TRD prototypes - Bucharest 

- 2 TRD prototypes - Muenster 

- 2 TRD prototypes -  Dubna 

- 2 TRD prototypes - Frankfurt  

- 2 Plastic Scintillators (beam trigger) 

- Pb-glass calorimeter (e/π identification) 

• 16  triangular pads were  

   readout  for each TRD 

 FASP-V0 – flat top  

   output, 40 ns ST 

 Mesytec ADC readout  

 DAQ - MBS 

  

 

DSTRD-V1 DSTRD-V2 

SSTRD 

2 regular foil radiators: 

•  Reg1 (20/500/120)  

•  Reg2 (20/250/220) 
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DSTRD-V1 4 gaps x 3 mm, 
 radiator: Reg2 (20/250/220) 

Pulse height distribution for electrons 
and pions @ 2 GeV/c momentum 

DSTRD-V2 4 gaps x 4 mm, 
 radiator: Reg1 (20/500/120) 

e/π discrimination 
Pion misidentification probability as  

a function of number of layers 

 0.8% @  6  TRD layers for DSTRD-V1 

 0.5% @  6  TRD layers for DSTRD-V2 

 

e 

e 

π 

π 
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Pulse height distribution for electrons 
and pions @ 2 GeV/c momentum 

e/π discrimination 
Pion misidentification probability as  

a function of number of layers 

 1.18% @  6  TRD layers for SSTRD 

 

 

HV
A
= 1900 V 

HV
D
=  400 V 

SSTRD 2 gaps x 4 mm + 4 mm drift 
radiator: Reg1 (20/500/120) 

e 

π 
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Position Reconstruction 

d=
1

Qi− 1
2 +Qi+1

2
× (W1+W 2)

W1=Qi− 1
2 (σ

2

w
ln(

Q
i

Qi− 1

−
w

2 ))
W2=Qi+1

2 (σ
2

w
ln(

Q
i+1

Qi

+
w

2 ))
x

rec
=d+(i+ 1

2)w

Track position relative to the center of 
 the pad with maximum charge (Q

i
) 

Algorithm: 

1. Pairing of triangular pads resulting: 

- a rectangular pad configuration 

- a tilted pad configuration 

2. Position along the pads is the intersection  

of two lines each one parallel with the y  

coordinate in the system associated with 

 the pad configurations from above 

Reconstructed position along the pads 

Pad response function for rectangular pads 

Pad width w = 1 cm 

Reconstructed position across the pads 
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Position Resolution 

σ
x
 = 320 μm σ

y
 = 5.5 mm 

position resolution  

across the pads 

position resolution  

along the pads 

DSTRD-V1 

DSTRD-V2 SSTRD 

Pad size = 1 cm x 8 cm 
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Current CBM TRD geometry 
TRD Station 1  

            7 m          

p
a

d
 size in

 cm
² 

scale pad size with radial  

distance to the beam 

inner part (3m x 3m) 

outer part 

60 x  
60 cm² 

100 x  
100 cm² 

inner module 

outer module 

Hit rate per pad station 1 


     5

 m
        


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Toward a TRD basic cell for the inner zone of  

CBM-TRD detector 

(2
7

.7
+

0
.2

)x
2

0
-0

.2
=

5
5

7
.8

 m
m

 

(7.3+0.2)x72-0.2=539.8 mm 

Drift electrode  

Al-kapton/3mm Rohacell/9 mm honeycomb/3 mm Rohacell/Al-kapton 

20 rows x 144 triangular pads/row = 2880 readout channels  

readout cell area (0.7 x 2.7)/2 cm2 ≈ 1 cm2 

55Fe source test in DetLab 
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(7.3+0.2)x72-0.2=539.8 mm 

Pulse height distribution for e and π: 

π 

e 

No. TRD layers

0 1 2 3 4 5 6 7 8
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[%
]

0.1

1

10

100

Central position (column 5)

Intermediate position (column 3)

Marginal position (column 1)

≈ 1 % with 6 TRD layers @ 3 GeV/c 

Reg2, HV
A
 = 2000 V, HV

D
 = 800 V  

FEE – FASP – flat top output, 40 ns shaping time  

Two ASIC Chips per FEB -> 16 input/output channels  

In-beam test of TRD basic cell prototype 
In-beam test @ T9 beam line of CERN PS 
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   Optimization of FASP characteristics  for better 

performance with SSTRD architecture    
 

- linearity of the FASP response for hits with an  input  
 charge in the range 15 fC-170 fC having the ionization  
 clusters randomly  distributed in a time window of 
 250 ns for 40 ns, 80 ns and 100 ns ST 

- uniformity of the FASP response for hits with the 
  same input charge of 65 fC  and having the ionization 
  clusters randomly distributed in a time window  of  
  250 ns for 40 ns, 80 ns and 100 ns ST 

- increased shaping time of 100 ns 

- pairing of the triangular pad signals inside the ASIC chip  

- 16 input/output channels 

- input signal polarity switch 

- chip submission in the second part of the year 
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   Optimization of FASP characteristics  for better 

performance with SSTRD architecture    
 

- linearity of the FASP response for hits with an  input  
 charge in the range 15 fC-170 fC having the ionization  
 clusters randomly  distributed in a time window of 
 250 ns for 40 ns, 80 ns and 100 ns ST 

- uniformity of the FASP response for hits with the 
  same input charge of 65 fC  and having the ionization 
  clusters randomly distributed in a time window  of  
  250 ns for 40 ns, 80 ns and 100 ns ST 

- increased shaping time of 100 ns 

- pairing of the triangular pad signals inside the ASIC chip  

- 16 input/output channels 

- input signal polarity switch 

- chip submission in the second part of the year 
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M1-1 M1-2 

M1-3 M1-4 

M2-1 M2-2 

~ 93% geometric efficiency 

 Proposed design  of the inner zone of the 

first station of CBM-TRD detector 
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Conclusions & Outlook  
 Double sided architecture of 4 x 4 mm gas thickness has the highest electron/pion discrimination 

performance operated with  FASP with 40 ns shaping time; geometric efficiency of a large TRD detector based 

on such an architecture is <80% for a single layer 

 Single sided architecture with 2 x4 mm + 4 mm gas thickness operated with FASP with 40 ns shaping time 

has still a good discrimination performance of 1% pion misidentification probability; geometric efficiency of a 

large TRD detector based on such an architecture is >90% for a single layer 

 Split pad geometry of the readout electrode gives access to two dimensional position reconstruction with 

good position resolution 

 A real size TRD prototype with the same inner geometry as single sided TRD was designed, constructed and 

tested for systematic performance  evaluation 

 FASP is optimum FEE in terms of performance and selection of data information to be stored   

A new FASP version with 100 ns shaping time is under development for optimum operation of two 

dimensional position sensitive single sided TRD architecture  

 Based on the real size TRD prototype, a design of the inner zone of the first TRD station with a maximum 

geometric efficiency was proposed 

Mandatory near future detailed investigations of: 

 - position resolution using high position resolution reference counter  

 - high counting rate and multi-hit environment on the whole active area 

 - GEANT simulations of the full configuration including realistic distribution of the material budget      
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Thank you for your attention!  

mm mm 
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Backup slides  
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CADENCE Simulation of 10 hits  that succeed at 1 μs one 
to the other 


