Analysis of test beam data by global optimization methods

R. Frühwirth1, T. Bergauer1, M. Friedl1, H. Gjersdal2, C. Irmler1, T. Spielauer1, A. Strandlie2,3, M. Valentan1

1Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
2University of Oslo, Oslo, Norway
3Gjøvik University College, Gjøvik, Norway

VCI 2013, Feb 14, 2013
Outline

- Motivation
- Algorithms
- Examples
 - ATLAS pixel test beam
 - Belle II test beam 2010
 - Belle II test beam 2012
- Conclusions
Track reconstruction in a silicon tracker requires:
- Estimation of alignment constants (shifts, rotations, ...)
- Calibration of hit resolution, depending on angle and cluster size
- Knowledge of material traversed

Solutions for full-scale trackers have been developed:
- Track-based alignment: Millepede, HIP, Kalman alignment, ...
- Track fit: GENFIT, KalTest, ...
- Sensor resolution: Manual or automatic tuning
- Material: detector description database, manual tuning

Full machinery is an overkill in a simple test beam environment.

Have developed **stand-alone software** for the concurrent estimation of alignment parameters, hit resolutions and material thickness.

Principal functionalities available in C++ (Oslo/Gjøvik) and Matlab (Vienna).
Track model in a test beam setup is usually a straight line

Estimation of track parameters either by Kalman filter (recursive least-squares) or by global fit (weighted least squares)

Estimation produces quality indicators such as local and global χ^2 statistics, standardized residuals (pulls) etc.

Standardized residuals must have mean 0 and rms 1, χ^2 must have mean equal to ndf, also for non-Gaussian errors

Principal idea: optimize an objective function based on the quality indicators as a function of a set of parameters

Parameters are alignment constants, hit resolutions, material thickness
The objective function can be tailored to the problem at hand (see examples later).

Requires multivariate optimization, preferably without computation of gradients.

Algorithms must be able to find the global optimum.

We have tried two optimizers:

- Simplex algorithm by Nelder and Mead: one of the standard methods (Matlab: fminsearch)
- VXQR1 by A. Neumaier: recent development at Univ. Vienna (Matlab: vxqr1 package)

Simplex more prone to end in a local minimum, can be cured by restarting several times.

VXQR1 finds region of global optimum more reliably, but takes longer to converge to the actual optimum.
Example 1: ATLAS pixel test beam

- EUDET telescope: six pixel sensors, $18.5 \mu m \times 18.5 \mu m$, $\sigma \approx 4 \mu m$
- DUT: three pixel sensors, $50 \mu m \times 400 \mu m$, $\sigma \approx 15 \mu m/115 \mu m$
- Total length $\approx 1 m$

The experimental setup, consisting of ATLAS pixel planes (DUT), and EUDET Mimosa26 planes (EUDET).
Example 1: ATLAS pixel test beam

- **Aim**: estimate as many resolutions and thicknesses as possible
- Assume that material is concentrated in sensor modules
- Assume that measurement errors are uncorrelated
- **Data**: about 40000 tracks (π^+) at $p = 120$ GeV/c
- Optimize several objective functions based on standardized hit residuals and state differences of forward and backward filters: force mean to 0 and rms to 1
 - Each call to the objective function requires a fit of the track sample
 - Run forward and backward Kalman filter on all tracks, compute hit residuals and state differences
- Cross-check with simulated data, also for lower beam energies
- Results published in H. Gjersdal et al., JINST 8 P01009 (2013)
Example 1: ATLAS pixel test beam

- State difference $\Delta \vec{x}_k$ in layer k equals predicted state (forward) minus updated state (backward) or vice versa.
- Covariance matrix of $\Delta \vec{x}_k$ is the sum of the respective covariance matrices.
- Can be computed in all layers except first and last one.
- Material thickness cannot be estimated in first and last layer.

\[
\begin{array}{c c c}
\text{Forward filter} & \rightarrow & \text{Backward filter} \\
1 & \vdots & k & \vdots & n \\
\end{array}
\]

\[
\Delta \vec{x}_k, \quad \text{cov}(\Delta \vec{x}_k)
\]
Example 1: ATLAS pixel test beam

- Simulated data, 5 objective functions, 2 beam momenta

Mean and standard deviation of resolution and thickness estimates from 500 simulation experiments, DUT plane 3, \(p = 120 \text{ GeV}/c \) (left) and \(p = 40 \text{ GeV}/c \) (right)
Example 1: ATLAS pixel test beam

- **Real data**

 ![Graphs of ORIG, APIX, TELR, and FULL](image)

 Initial guesses

 Estimate resolution and material in DUT

 Estimate resolution and material in DUT, resolution in EUDET

 Estimate resolution and material in DUT, resolution and material in EUDET

 P-values of the track χ^2 for an increasing number of free model parameters. The histograms are scaled such that the average bin-content is 1.
Example 2: Belle II strip sensor test beam 2010

Test beam setup 2010
Example 2: Belle II strip sensor test beam 2010

- Stack of four double-sided sensors, n-side measures x, p-side measures y
- Total length of stack is ≈ 27 cm
- Two rectangular sensors (first and last):
 - n-side: 240 μm pitch with intermediate strips, measures x
 - p-side: 75 μm pitch with intermediate strips, measures y
- Two trapezoidal sensors:
 - n-side: 240 μm pitch with intermediate strips, measures x
 - p-side: 50 to 75 μm pitch with intermediate strips, measures y
Example 2: Belle II strip sensor test beam 2010

Trapezoidal sensor, n-side
Example 2: Belle II strip sensor test beam 2010

- **Aim**: estimate seven alignment parameters (four shifts and three rotation angles) and eight sensor resolutions (x and y)
- Short lever arm and very thin sensors \implies not enough sensitivity to multiple scattering to estimate thickness
- **Data**: about 58000 tracks (π^+, p, K^+) at $p = 120$ GeV/c
- Optimize an objective function based on standardized hit residuals: force mean to 0 and rms to 1
 - Each call to the objective function requires a fit of the track sample
 - Run forward and backward Kalman filter on all tracks, compute hit residuals
 - Can use median and MAD in place of mean and rms — suppress influence of outliers

R. Frühwirth 14 VCI 2013
Implementation in Matlab

Kalman filter matrices are precomputed, reconstruction of entire sample takes about 400 msec

Speed of convergence: \(\approx 150 \) fits for alignment, \(\approx 500 \) fits for resolution

Estimated resolutions (simplex algorithm, in \(\mu \)m):

- \(x \) (n-side): 25 44 40 23
- \(y \) (p-side): 13 11 9 12

Differences in n-side resolution partially explained by different S/N ratio — correlations on n-side?

Results of VXQR1 agree within 2 \(\mu \)m

Final distribution of \(P \)-values shows that errors are close to, but not quite Gaussian
Example 2: Belle II strip sensor test beam 2010

P-values of the track χ^2 with final alignment and resolutions.
Mean: 0.504, rms: 0.283.
Example 3: Belle II strip sensor test beam 2012

Test beam setup 2012
Example 3: Belle II strip sensor test beam 2012

- Stack of eight single-sided rectangular sensors, n-side measures y, p-side not read out
- Pitch on n-side is $100 \, \mu m$
- Total length of stack is $\approx 18 \, cm$
- Sensors 2 and 5 have large areas of inefficiency and are discarded in the analysis
- High percentage of clusters of size 1, between 62% and 73%
- Because of small distance between layers and parallel strips, strong correlations between hits with cluster size 1
- η-correction, being deterministic function, does not damp correlations significantly
- Clusters with size ≥ 1 are assumed to be uncorrelated
Example 3: Belle II strip sensor test beam 2012

- **Aim**: estimate four shifts and sensor resolutions separately for clusters with size 1 and larger clusters.
- Short lever arm and very thin sensors \implies not enough sensitivity to multiple scattering to estimate thickness.
- **Data**: about 60000 tracks (π^+, p, K^+) at $p = 120 \text{ GeV}/c$.
- Track sample is divided into up to 30 subsamples according to their cluster patterns (size=1 or size\geq1).
- Most frequent pattern is cluster size 1 only.
- Number of tracks used is 37600.
Example 3: Belle II strip sensor test beam 2012

- Optimize an objective function based on hit residuals: force mean to 0 and rms to 1
 - Each call to the objective function requires a fit of the track sample
 - Fit implemented by weighted linear regression, multiple scattering is neglected
 - Regression matrices are precomputed for all possible cluster size patterns
 - Resulting fit is considerably faster than Kalman filter: \(\approx 120 \text{ msec for fit of 30 patterns (37600 tracks)} \).

- Alignment converges very quickly, not affected by correlations
- Estimation of resolutions is affected by correlations
Example 3: Belle II strip sensor test beam 2012

But: Full correlation matrix cannot be determined uniquely from the linear LS fit residuals, as residuals are confined to subspace of lower dimension

Ridge regression and shrinkage estimators do not give reasonable correlations

Possible solution: use nonlinear fit instead, for example L1 fit

As tracks are nearly parallel, approximate L1 fit its just median of hit coordinates

Have computed approximate correlation matrix in the following way:

- Shift each track such that median of hits is zero
- Compute correlation matrix of all hits
Example 3: Belle II strip sensor test beam 2012

- Have checked this procedure with simulated tracks
- Generate 40000 tracks with a mixture model of errors
 - 70% of hits have correlated uniform errors ($\sigma = 29 \mu m$) ↔ cluster size 1
 - The rest has uncorrelated normal errors ($\sigma = 15 \mu m$) ↔ cluster size >1
 - Correlations are generated randomly, uniformly in $[-0.5, 0.5]$
- Compare results with and without estimated correlation matrix
Example 3: Belle II strip sensor test beam 2012

- Results of simulation study
- With estimated correlations:

<table>
<thead>
<tr>
<th>Est. σ cluster size 1</th>
<th>Est. σ cluster size 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 × 29 29 × 27 29 28</td>
<td>14 × 17 17 × 15 16 15</td>
</tr>
</tbody>
</table>

- With zero correlations:

<table>
<thead>
<tr>
<th>Est. σ cluster size 1</th>
<th>Est. σ cluster size 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 × 29 30 × 28 31 31</td>
<td>17 × 13 15 × 13 14 13</td>
</tr>
</tbody>
</table>

- Results not perfect, but estimation of correlations seems to help somewhat
Under the same procedure we get the following resolutions for the real data:

<table>
<thead>
<tr>
<th>Estimated σ, cluster size 1</th>
<th>Estimated σ, cluster size >1</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 x 24 23 x 27 32 23</td>
<td>15 x 17 17 x 24 26 19</td>
</tr>
</tbody>
</table>

Actually this looks very reasonable

- Layers 3 and 4 are identical and give indeed the same resolution
- Layer 7 has a noise problem and has indeed the worst resolution
- Layer 1 probably a bit too good

Distribution of P-values is not that bad either, but clearly shows that the estimated correlations are not the true ones

Will continue to work on this problem
Example 3: Belle II strip sensor test beam 2012

P-values of the track χ^2 with final alignment and resolutions.
Mean: 0.549, rms: 0.286.
Conclusions

- Have developed simple stand-alone program for integrated alignment and calibration of silicon sensors in test beam environments
- Under suitable conditions, sensor thickness (and other material) can be estimated as well
- Calculation time not more than a couple of minutes for ≈ 50000 tracks on a single core
- Reconstruction of larger samples can be easily parallelized
- Individual components of the error distribution can be estimated, e.g. for a mixture of different cluster sizes
- Multiple scattering decorrelates measurements and enables estimation of module material and possibly other material in the beam
Conclusions

❌ Global optimization limited to a fairly small number of variates, doubtful whether approach can be applied to a full scale tracker — could nevertheless be interesting to try it

❌ Problems arise if the observation errors are strongly correlated across layers — we have proposed a solution to this problem, which is, however, not perfect
Conclusions

- Should try to minimize the correlations:
 - Reduce number of size 1 clusters by improving S/N ratio
 - Introduce stereo angles between layers
 - Slant modules relative to beam
 - Increase distance between layers
 - Use beam with lower energy so that multiple scattering is no longer negligible
 - Put additional material next to sensors (just kidding!)

- Will have another test beam with low energy electrons early next year — how to handle bremsstrahlung?
Conclusions

- Should try to minimize the correlations:
 - Reduce number of size 1 clusters by improving S/N ratio
 - Introduce stereo angles between layers
 - Slant modules relative to beam
 - Increase distance between layers
 - Use beam with lower energy so that multiple scattering is no longer negligible
 - Put additional material next to sensors (just kidding!)

- Will have another test beam with low energy electrons early next year — how to handle bremsstrahlung?

Thank you!