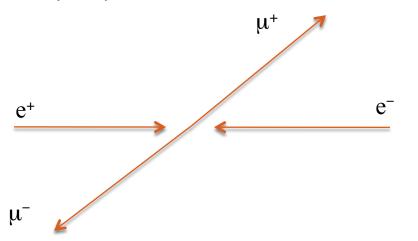
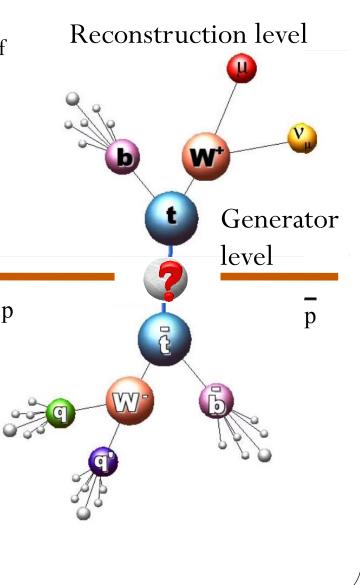
Forward-backward asymmetry in top-antitop production in proton-antiproton collisions

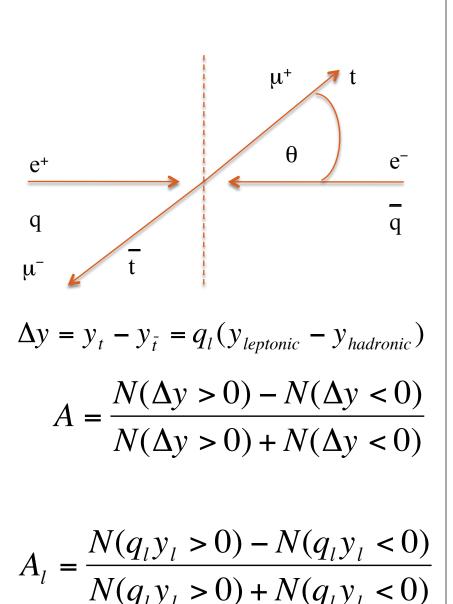

Regina Demina, University of Rochester 28/04/2012


Asymmetry in top-antitop production

In early 80s asymmetry observed in $e^+e^- \rightarrow \mu^+\mu^-$ at $sqrt(s)=34.6 \text{ GeV} << M_Z$ was used to verify the validity of EW theory (Phys. Rev. Lett. 48, 1701–1704 (1982)

• Similarly, asymmetry in $p\overline{p} \rightarrow t\overline{t}$ production could give information about new physics

- Mediator with axial coupling in s-channel
- Abnormally enhanced t-channel production
- Complications:
 - Top is not observed directly, but reconstructed through its decay products
 - Proton and antiproton are not point-like objects, lab frame is different from rest frame



Definitions

• Asymmetry defined for $ee \rightarrow \mu\mu$

$$A = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$$

- In proton-antiproton collisions $\theta \rightarrow y$
- Δy is invariant to boosts along *z*-axis
- Asymmetry based on Δy is the same in lab and tt rest frame
- Asymmetry based on rapidity of lepton from top decay
 - Lepton angles are measured with a good precision

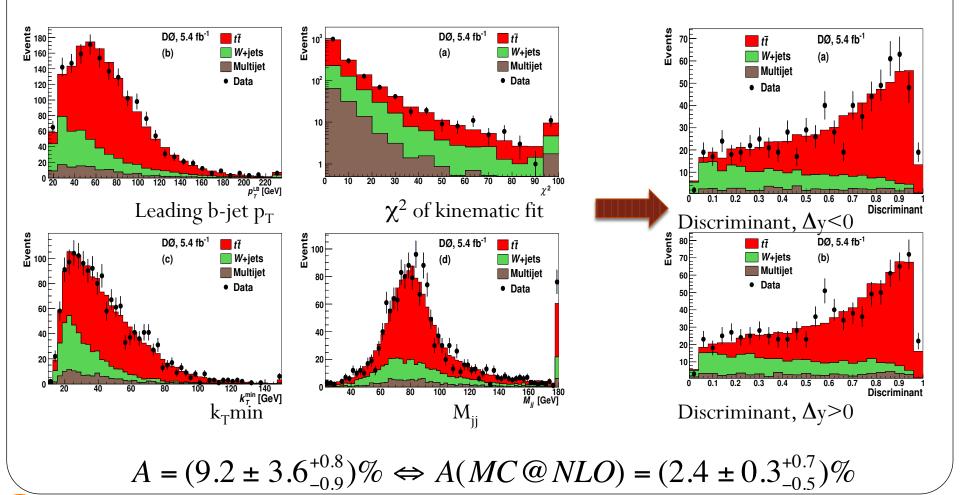
History of measurements and predictions D0, reconstruction level

•PRL 100, 142002(2008)

•ICHEP2010

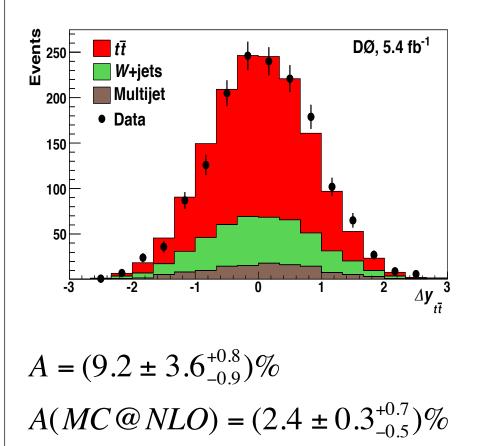
 $A(0.9 fb^{-1}) = (12 \pm 8)\%$ $A(4.3 fb^{-1}) = (8 \pm 4)\%$ $A(MC @ NLO) = (0.8 \pm 1)\%$

CDF, generator level

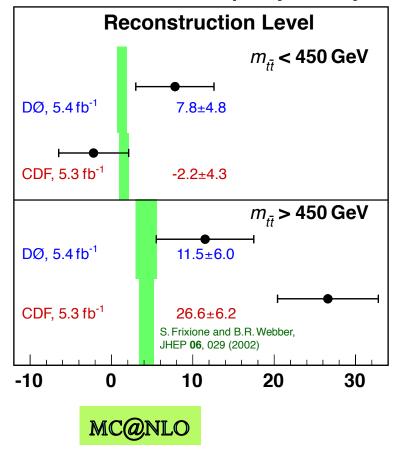

•PRL 101, 202001(2008)

•Phys. Rev. D 83,112003 (2011)

 $A(1.9 fb^{-1}) = (24 \pm 14)\%$ $A(5.3 fb^{-1}) = (15.7 \pm 7.4)\%$ $A(MC @ NLO) = (5.0 \pm 0.1)\%$

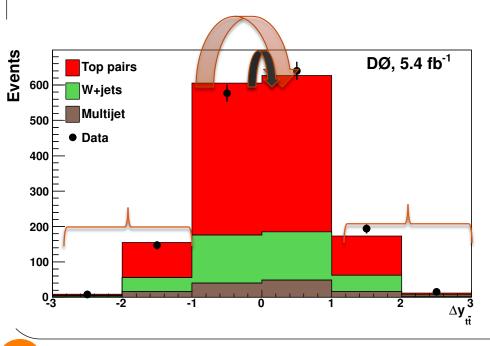

Reconstruction of top-antitop signal Leptonic top **Require :** \rightarrow 1 lepton with $p_T > 20 GeV$ $\rightarrow \mathbb{E}_{T} > 20 GeV$ W $\rightarrow \geq 4$ jets with $p_T > 20 GeV$ \rightarrow leading jet with $p_T > 40 GeV$ $\rightarrow \geq 1 \text{ b} - \text{tag}$ \rightarrow In kinematic fit constrain $-M_{W} = 80.4 GeV$ $-M_{t} = 172.5 GeV$ \rightarrow Charge of lepton determines which reconstructed quark is top Hadronic top 1581 events pass the selection requirements in 5.4 fb⁻¹

Asymmetry at reconstruction level Using kinematic variables of 1+jets events construct a discriminant and fit events with $\Delta y > 0$ and $\Delta y < 0$ for top fraction



Regina Demina, University of Rochester

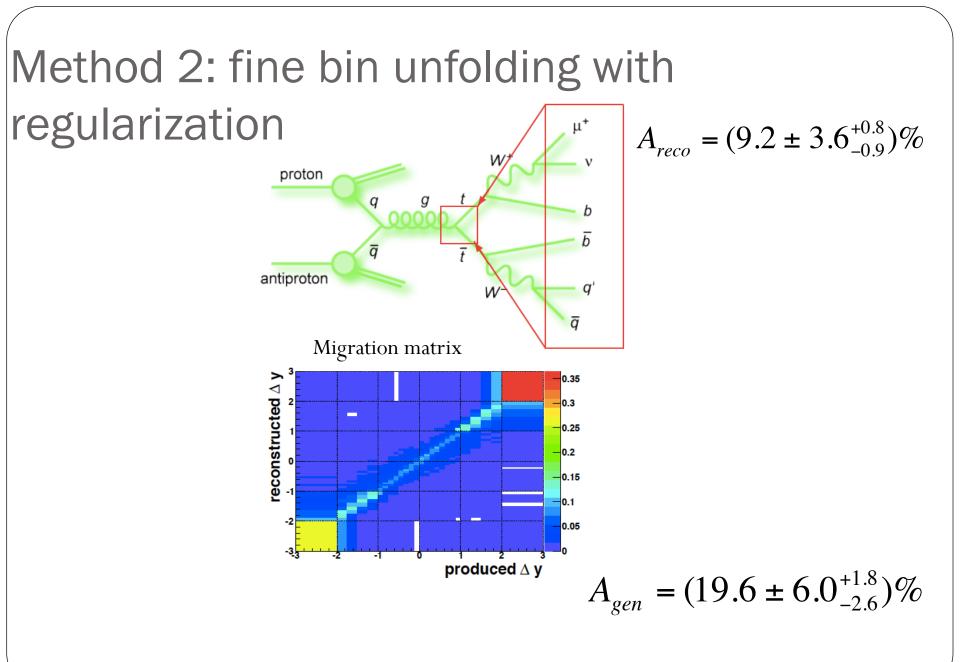
Asymmetry dependence on M_{tt}


Forward-Backward Top Asymmetry, %

Generated asymmetry

- "Unfolding" = correcting for acceptance
 (A) and detector resolution (S)
- Method 1: 4 bin Likelihood unfolding : $\vec{n}_{reco} = SA\vec{n}_{gen} \Rightarrow \vec{n}_{gen} = A^{-1}S^{-1}\vec{n}_{reco}$

$$\Rightarrow A = (16.9 \pm 7.7^{+1.8}_{-2.6})\%$$



Problem with Method 1: migration of events near inner bin edge $(\Delta y \rightarrow 0)$ is underestimated, while for the outer edge it is overestimated Solution: *fine* bins closer to $\Delta y=0$

Problem: statistical fluctuations in data make the fine bin unfolding unstable

Solution: employ *regularization* Bonus: reduced statistical uncertainties

Method 2: fine bin unfolding with regularization

Results for asymmetry, in %

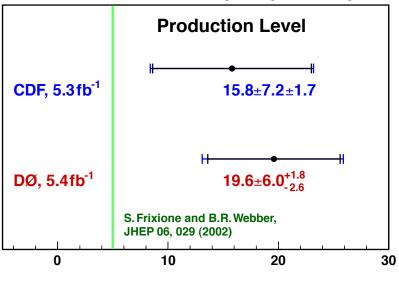
- Reconstruction level (experiments cannot be directly compared, only to Monte Carlo after reconstruction and selection)
 - D0 (5.4 fb^{-1}) $9.2 + 3.6^{+0.8}$
 - MC(a)NLO (D0)

$$2.4 \pm 0.3^{+0.7}_{-0.5}$$

- CDF (5.3 fb^{-1})
- 7.5 ± 3.7
- MC@NLO (CDF)
- 2.4 + 0.5

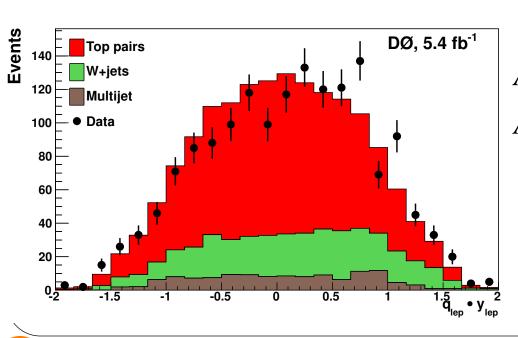
Generator level

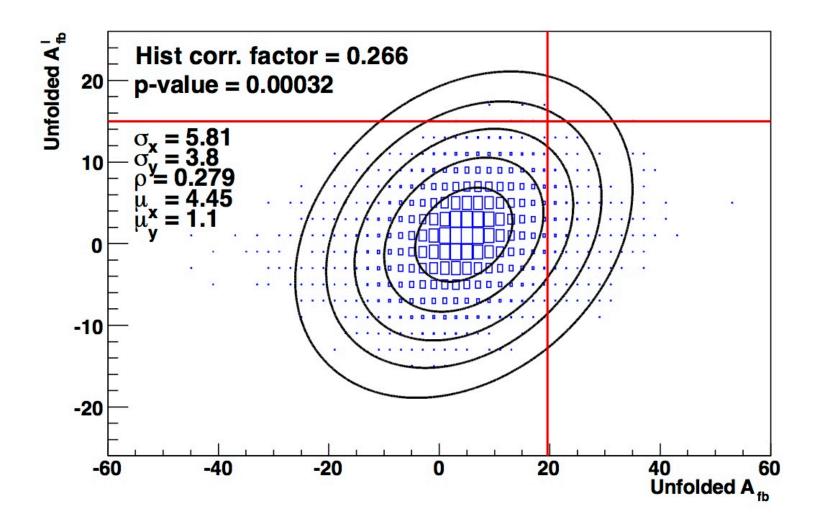
(experiments can be directly compared)


• D0 $19.6 \pm 6.0^{+1.8}_{-2.6}$

CDF

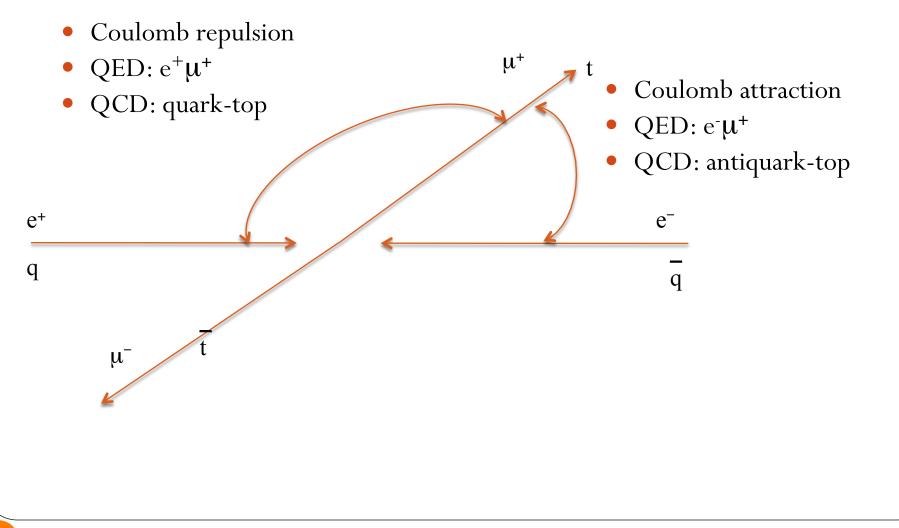
 $15.8 \pm 7.2 \pm 1.7$

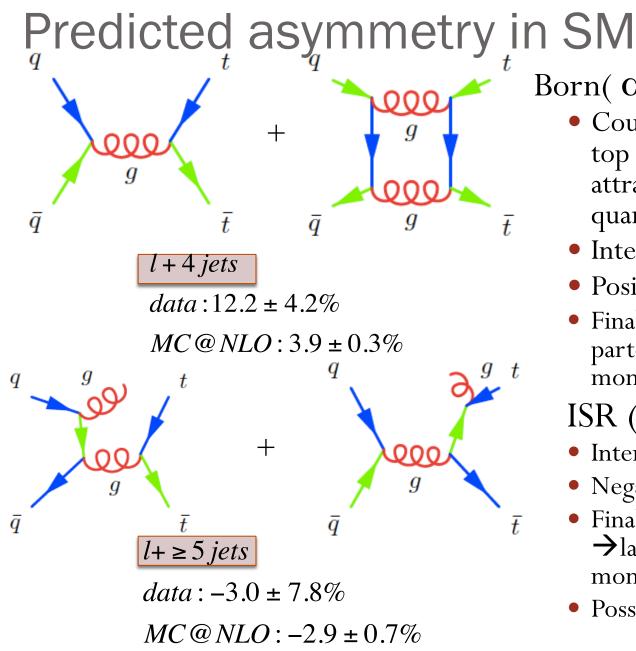

 5.0 ± 0.1 • MC@NLO



Lepton-based asymmetry, in %

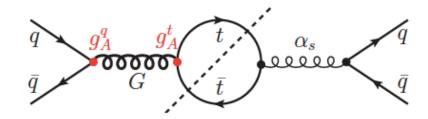
- Since lepton direction is defined with a very good precision, lepton based asymmetry is simpler to extract
- Lepton from top decay carries information about underlying asymmetry at production
- Can be directly compared to theoretical predictions




Reconstruction level $A_{l} = 14.2 \pm 3.7 \pm 0.7$ $A_{l}(MC@NLO) = 0.8 \pm 0.3 \pm 0.5$ Generated level $A_{l} = 15.2 \pm 3.8^{+1.0}_{-1.3}$ $A_{l}(MC@NLO) = 2.1 \pm 0.1$ Unfolded A_{FB}^{lep} vs A_{FB}

12

Interpretation of the Asymmetry


Born(α_{s}^{2}) and box(α_{s}^{4})

 Coulomb-like repulsion of top and quark and attraction of antitop and quark in QCD

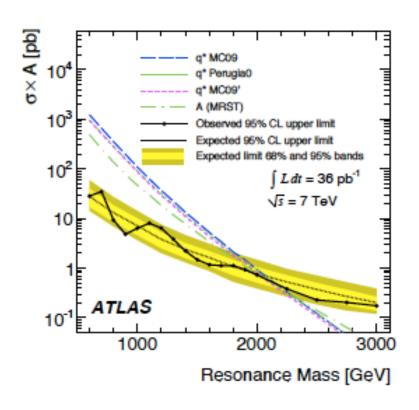
• Interference $-\alpha_s^3$

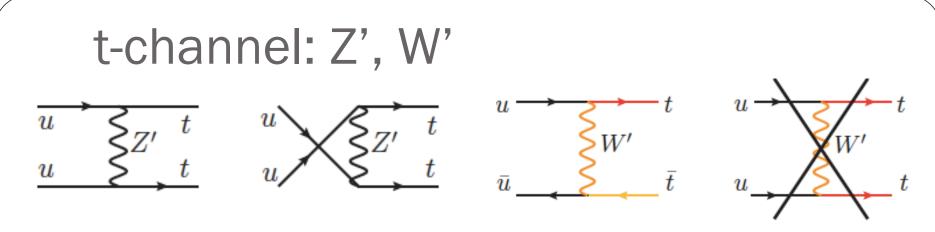
- Positive asymmetry
- Final state with no extra partons → small transverse momentum of the tt system
- ISR (α_s^3) and FSR(α_s^3)
- Interference α_s^3
- Negative asymmetry
- Final state with extra gluons
 →large transverse momentum of the tt system
- Possible extra jets

S-channel: color-octet vectors (axigluons)

Axigluon contributions to $t\bar{t}$ production

$$\sigma_a^{\rm INT} \sim g_A^q \, g_A^t \, \frac{1}{M_{t\bar{t}}^2 - M_G^2} \,, \qquad \sigma_s^{\rm NP} \sim (g_A^q)^2 (g_A^t)^2 \frac{M_{t\bar{t}}^2}{(M_{t\bar{t}}^2 - M_G^2)^2} \,.$$


A positive charge asymmetry $\sigma_a^{\rm NP} > 0$ requires


- $M_G > M_{t\bar{t}}$: flavor non-universal axigluon couplings,
- $M_G < M_{t\bar{t}}$: flavor universal axigluon couplings.

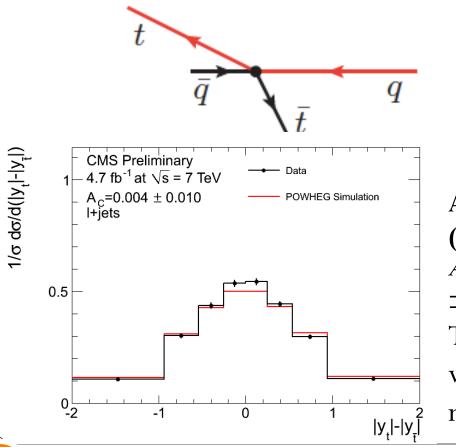
Upper limit on $|g_A^q g_A^t|/M_G^2$: effect on total cross section $\sigma_{t\bar{t}} \sim \sigma_s^{NP}$ and resonance in spectrum $d\sigma_{t\bar{t}}/dM_{t\bar{t}}$.

Experimental constraints on axigluons

- Indirect
 - D-mixing M_G>200GeV
 - EW precision (Zbb, Γ_Z , σ_{had}) M_G>500GeV
- Direct dijet resonances LHC pp \rightarrow G \rightarrow 2 jets Atlas M_G>2TeV (Γ /M<15%) From angular distribution M_G>1.7TeV
- Caveat: limits are probably not applicable for low mass (<400GeV) and large width

Direct constraint :

from like-sign tops at LHC



•Introduce $SU(2)_X$ that places $(u t)_R$ in the same doublet

- •W' carries "top number" thus suppressing like-sign top production at LHC
- •Predicted asymmetry due to W' $\sim 30\%$
 - •More forward than SM or s-channel production
 - •As a result observed asymmetry reduced to 20%
- •Least constrained by other experimental data, asymmetries in agreement with observed
- •Test this hypothesis by using top polarization

How to compare to charge asymmetry at LHC

- 2 problems compared to Tevatron:
 - Large fraction of top pairs (\sim 90%) are produced in gluon fusion
 - Direction of quark (vs antiquark) is determined from the boost with \sim 70% accuracy
 - Naively, **20% asymmetry at Tevatron** corresponds to **0.8% asymmetry at LHC**
 - But need relevant models to extrapolate predictions.

$$q = \frac{1}{\bar{t}} \int \frac{\bar{q}}{\bar{q}}$$

A (CMS, 4.7 fb⁻¹)= 0.4 ± 1.0 (stat.) ± 1.2 (syst.)% = $0.4 \pm 1.6\%$ $A(Atlas, 0.7 fb^{-1}) = -2.4 \pm 1.6$ (stat) ± 2.3 (syst)% = $-2.4 \pm -2.8\%$ These results are completely consistent with the corresponding the asymmetry measured by Tevatron.

A word of caution about systematics on the prediction

- How well do we know the production mechanism of top pair in pp?
- gg vs qqbar fractions depend strongly on gluon pdf at high x

$$F^{q\overline{q}}(x) = 1 - F^{gg}(x)$$

- Since qqbar fraction is only ~10% of gg, 10% uncertainty on gg fraction corresponds to a factor of two uncertainty on F_{qq}
- Uncertainty on expected observed asymmetry is directly proportional to uncertainty on the qqbar fraction:

$$A_{observed} = \frac{N_F - N_B}{N_{total}} = \frac{N_F^{gg} + N_F^{qq} - N_B^{gg} - N_B^{qq}}{N_{total}} = A^{gg} F^{gg} + A^{qq} F^{qq} = A^{qq} F^{qq}$$

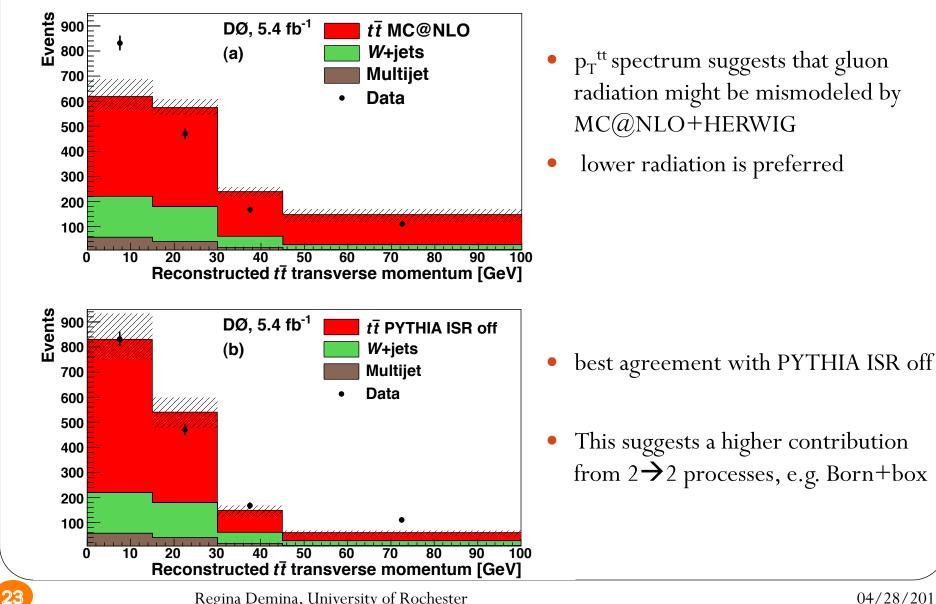
Instead of conclusion: Personal remarks

- Results are consistent between Tevatron experiment and correspond to ~20% asymmetry at production level
 - More certainty with full dataset
- Simple cross check with lepton-based asymmetry also shows significant asymmetry
- LHC results are not at the precision to contradict the Tevatron data yet
 - But will be very soon
- Standard Model QCD calculation for asymmetry exists only at $\alpha_s^{\ 3}$ level, which is LO for asymmetry
 - α_s^4 prediction for asymmetry is expected soon
- Most BSM explanations are contradicted by other experimental results

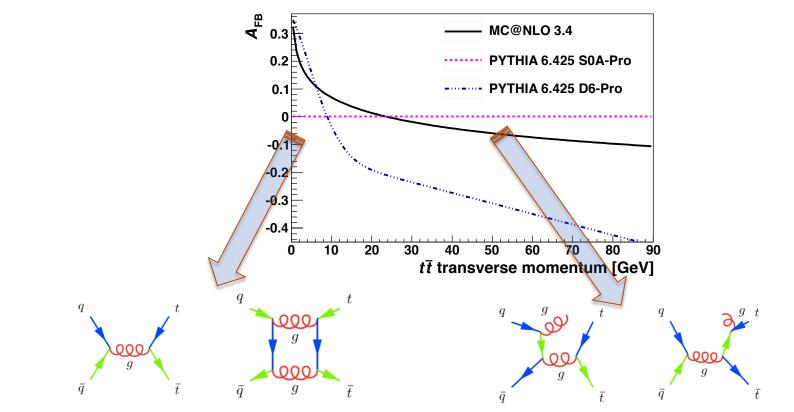
It's a lovely mystery!

Systematics on A

TABLE VII. Systematic uncertainties on $A_{\rm FB}$.


	Absolute uncertainty ^a $(\%)$		
	Reconstruction level		Prod. level
Source	Prediction	Measurement	Measurement
Jet reco	± 0.3	± 0.5	± 1.0
$\mathrm{JES}/\mathrm{JER}$	+0.5	-0.5	-1.3
Signal modeling	± 0.3	± 0.5	+0.3/-1.6
b-tagging	-	± 0.1	± 0.1
Charge ID	-	+0.1	+0.2/-0.1
Bg subtraction	-	± 0.1	+0.8/-0.7
Unfolding Bias	-	-	+1.1/-1.0
Total	+0.7/-0.5	+0.8/-0.9	+1.8/-2.6

Systematics on A_I


TABLE VIII. Systematic uncertainties on $A_{\rm FB}^l$.

	Absolute uncertainty ^a (%)		
	Reconstruction level		Prod. level
Source	Prediction	Measurement	Measurement
Jet reco	± 0.3	± 0.1	± 0.8
JES/JER	+0.1	-0.4	+0.1/-0.6
Signal modeling	± 0.3	± 0.5	+0.2/-0.6
b-tagging	-	± 0.1	± 0.1
Charge ID	-	+0.1	+0.2/-0.0
Bg subtraction	-	± 0.3	± 0.6
Total	± 0.5	± 0.7	+1.0/-1.3

Modeling of gluon radiation

Asymmetry and gluon radiation

- MC@NLO+HERWIG suggests strong dependence of asymmetry on p_T^{tt}
- Some PYTHIA tunes suggest even more dramatic dependence while other do not the main parameter that affects this behavior is angular coherence of ISR
- Asymmetry dependence on p_T^{tt} is a source of systematic uncertainty on the <u>measured</u> value of asymmetry
- Higher weight of 2→2 processes (Born+box) would shift the <u>predicted</u> asymmetry toward more positive and higher values: yet it is hard to make 20% from 5%

Predicted asymmetries: axigluons

Heavy axigluon [Ferrario & Rodrigo, Phys.Rev.D80:051701,2009][Haisch & SW, arXiv:1106.0529] Flavor non-universal couplings $g_A^q = -g_A^t = 1$, $M_G = 2$ TeV, $\Gamma_G/M_G = 10\%$.

• Effects limited by dijet production (g_A^q) .

$$(A_{\mathsf{FB}}^t)^>_{\mathsf{max}} = 20\%$$

Light axigluon[Tavares & Schmaltz, arXiv:1107.0978][see also Barcelo et al., arXiv:1106.4054]Flavor universal couplings $g_A^q = g_A^t = 1/3$, $M_G = 400 \,\mathrm{GeV}$, $\Gamma_G/M_G \gtrsim 10\%$.

- Evade bounds from dijet production (g_A^q) and T parameter (g_A^t) .
- Need large width Γ_G to suppress resonance in $M_{t\bar{t}}$ spectrum \rightarrow additional matter in axigluon decay. $(A_{FB}^t)_{NP}^>$

$$(A^t_{\mathsf{FB}})^>_{\mathsf{NP}}pprox 30\%$$