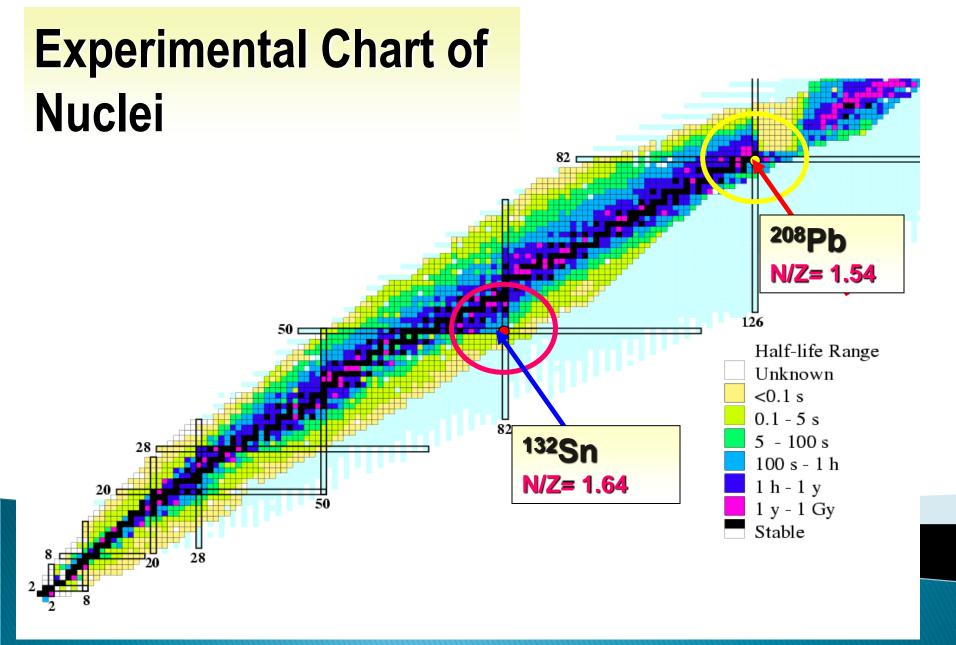
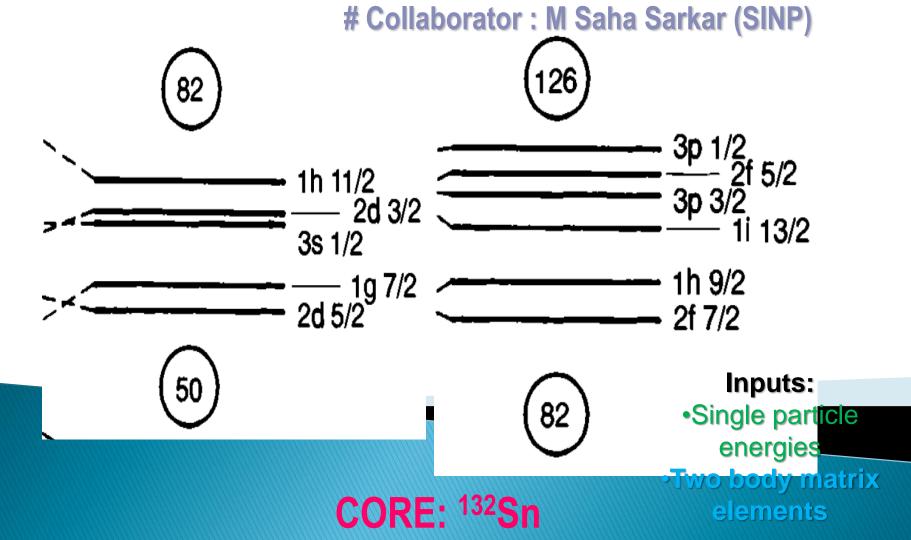
Shell Structure and Shell Evolution in Neutron-rich Nuclei

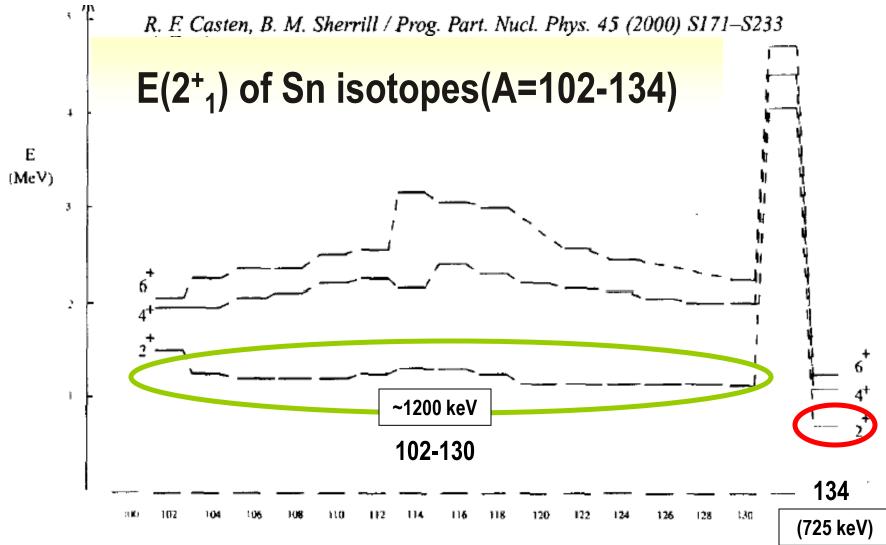
Sukhendusekhar Sarkar

Bengal Engineering and Science University, Shibpur, Howrah – 711103, W.B., India. Vanishing of shell closures: Theory and experiment are now indicating that shell closures may change far from stability.


Issues

- Neutron-rich Sn isotopes : Depressed first E(2+) & low B(E2); New shell closure predicted at N=90 and the role of three body forces.
- Anomalous depression of 5/2⁺ state in ¹³⁵Sb
- Shell evolution of neutron rich nuclei and the role of pairing – experimental signatures and implications


Signatures of changing shell structure away from stability


- ▶ The energy of the first 2⁺ state (E(2⁺₁)) of even-even nucleus
 - Spherical nuclei:
 - this state is formed by breaking a pair spending the pair binding energy,
 - Or exciting a pair across the energy gap to the next orbit- therefore shows pronounced maxima at the shell closures.
 - Deformed nuclei : "anomalously" low first excited collective 2+ states are observed.
 - Three new doubly magic Oxygen isotopes have been observed. (¹⁴O, ²²O and ²⁴O)
 - For neutron rich nuclei, semi-magic ones like ${}^{32}Mg$, ${}^{30}Ne$ have shown erosion of N=20 shell closure with sudden decrease in their E(2⁺ ₁) values and an increase in their corresponding B(E2, 2⁺₁ \rightarrow 0⁺₁).
 - However some recent measurements of reduced (E(2⁺₁)) and B(E2) values in highly neutron nuclei having Z=4-18 have raised a serious discussion on hindered E2 strength unexpected for these nuclei phenomenologically as well as theoretically.

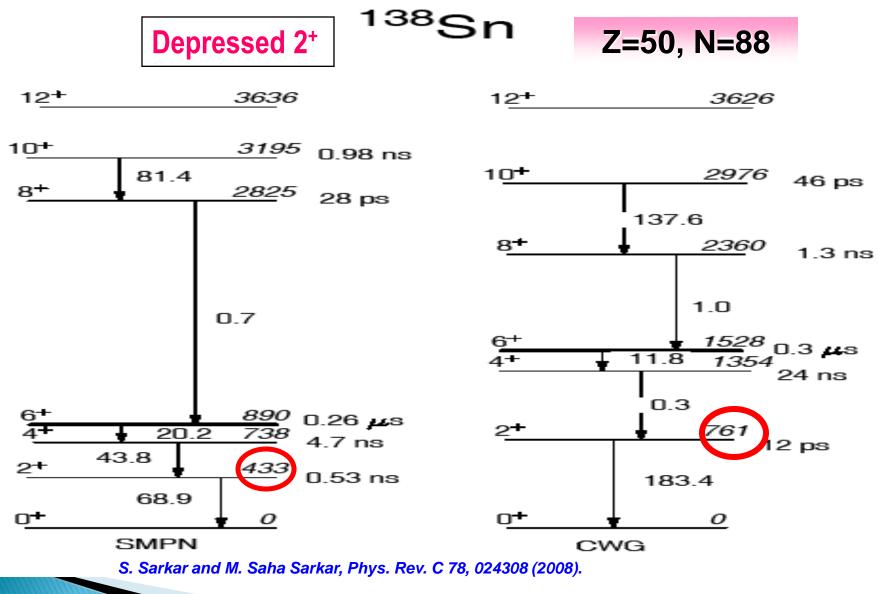
Neutron-rich Sn isotopes : New shell closure predicted at N=90 and the role of three body forces.

A

Interactions used

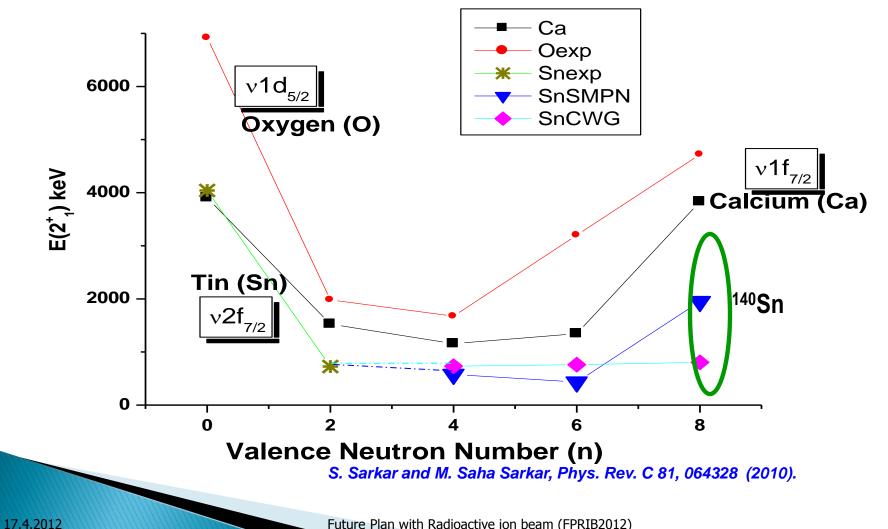
- Primarily two types of interactions used: realistic and empirical
 - Empirical interactions : the interaction derived from ²⁰⁸Pb region (Chou & Warburton) which fails for N > 84: specific matrix elements are tuned to reproduce known experimental levels.

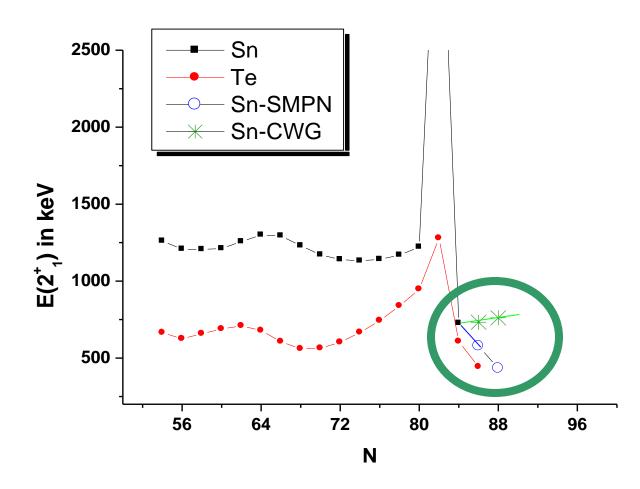
S. Sarkar, M. Saha Sarkar, Eur. Phys. Jour. A21, 61 (2004).


 Realistic interactions obtained starting with a G matrix derived from the CD-Bonn nucleon-nucleon interaction using the Q-box method

B. A. Brown, N. J. Stone, J. R. Stone, I. S. Towner, and M. Hjorth-Jensen, Phys. Rev. C 71, 044317 (2005).

Both give similar agreement: comparatively better with SMPN; $R_4 = E_4/E_2$ indicate vibrational spectrum


		138	зТе		
10 +	<u>263</u> 6	1 <u>0</u> +	<u>276</u> 0	Z=52, 10 ⁺	N=86 2535
8+	2280	(8+)	2199		
8+	<u>203</u> 4	8	2089	8 <u>+</u> 8+	<u>200</u> 4 1970
6 <u>+</u>	<u>137</u> 6	6 +	<u>144</u> 0	6 +	<u>13</u> 01
4 <u>+</u>	<u>87</u> 9	4 <u>+</u>	<u>90</u> 4	4 <u>+</u>	776
2 <u>+</u>	<u>47</u> 0	2 <u>+</u>	<u>44</u> 3	2+	356
0 <u>+</u> SM	<u>o</u> PN	o + Ex	<u>0</u> pt.	0 <u>+</u> C'	wg o
S. Sarkar and M. Saha Sarkar, Phys. Rev. C 78, 024308 (2008).					

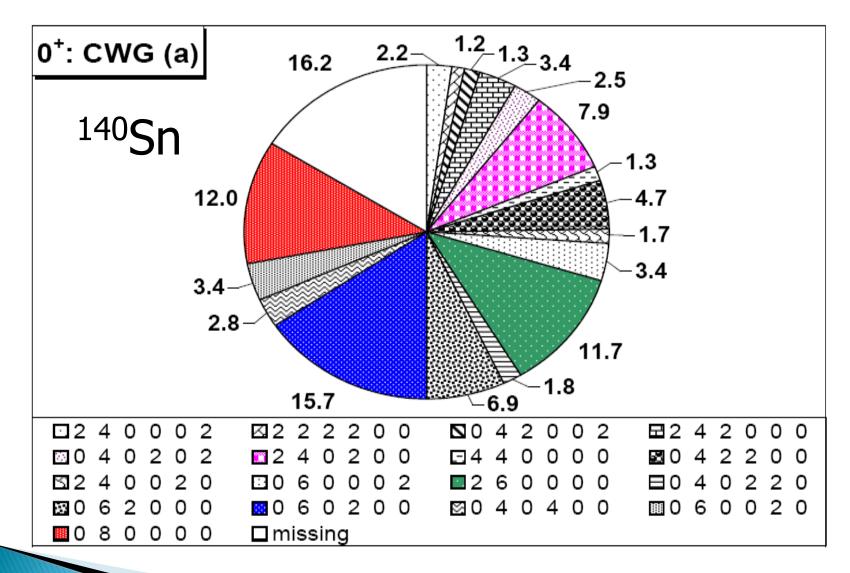


17.4.2012

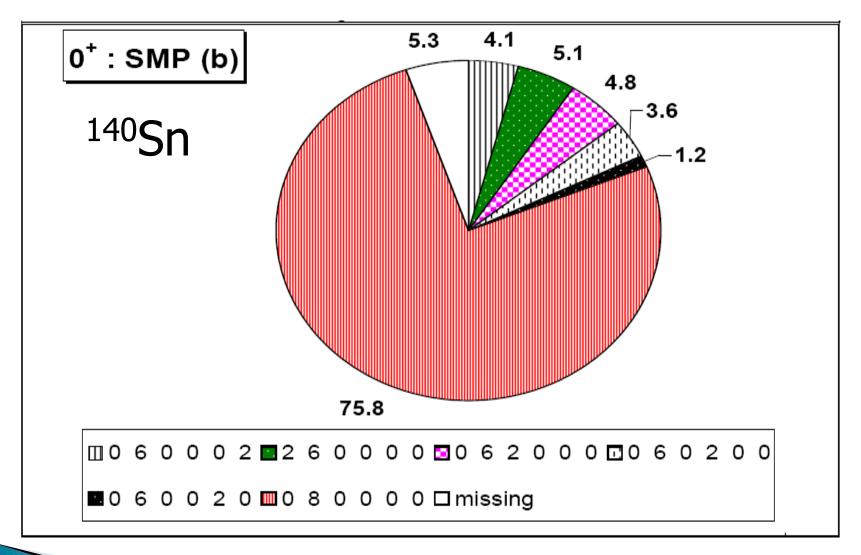
Results for ¹³⁶⁻¹⁴⁰**Sn**: **Comparison with other neutron-rich regions**

Casten-Sherrill observation

Casten and Sherill have pointed out that, although $[E(2_1^+)Sn - E(2_1^+)Te]$ 400 keV for a given neutron number over most of the N = 50-82shell, the difference is only 119 keV for N = 84

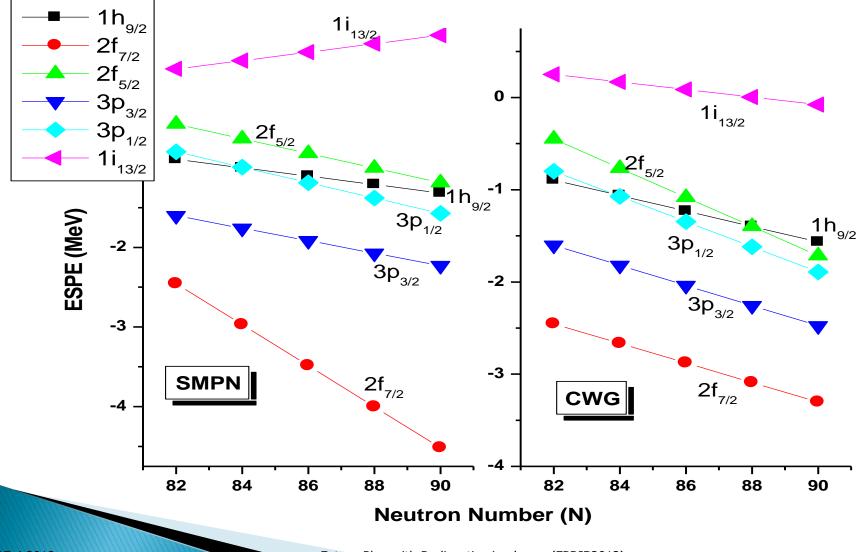

 The difference for N = 86 is 108 keV with SMPN. It is consistent with the trend discussed by Casten and Sherill. (Casten-Sherrill Systematics)

For CWG, this
 difference is 733 - 356 =
 377 keV for N = 86,
 which deviates from the trend.

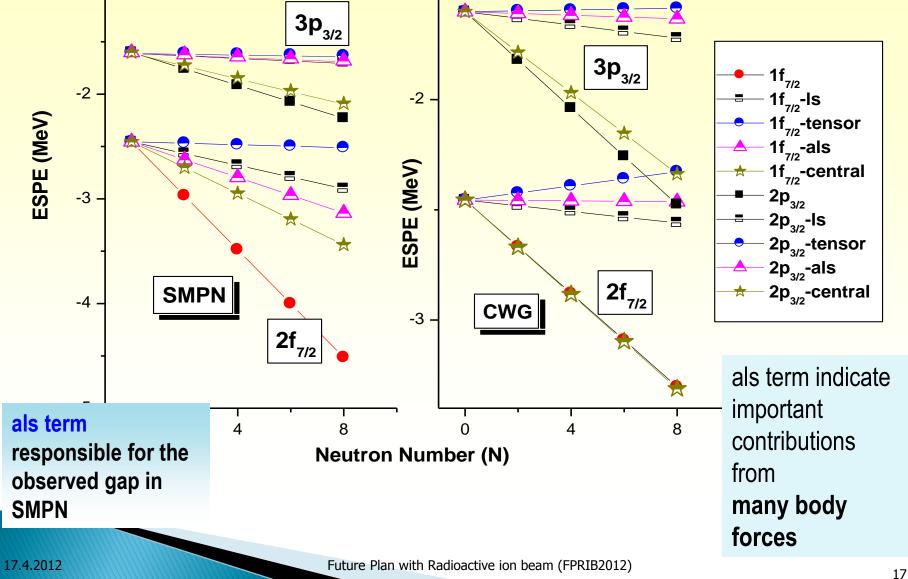

R. F. Casten and B. M. Sherrill, Prog. Part. Nucl. Phys. 45, S171 (2000).

Wave function structure for CWG

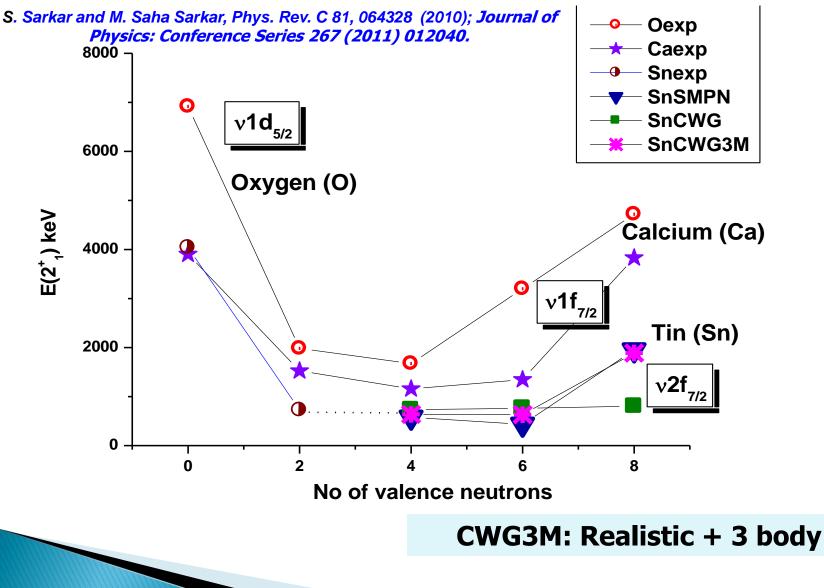
17.4.2012

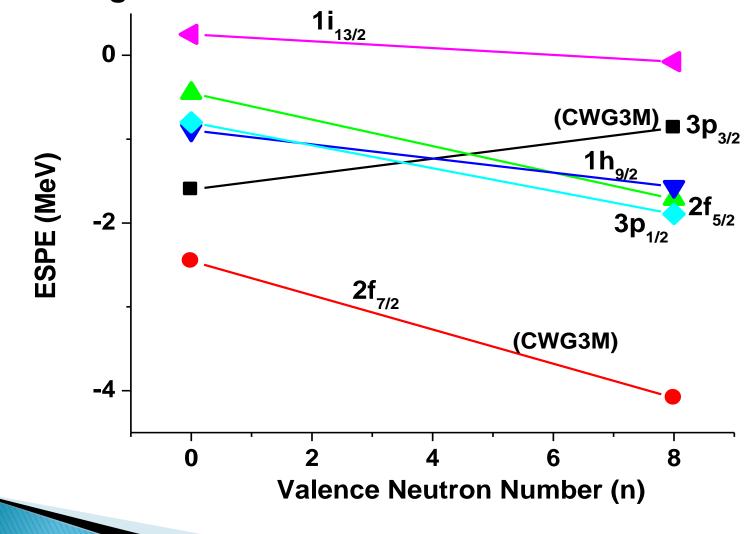


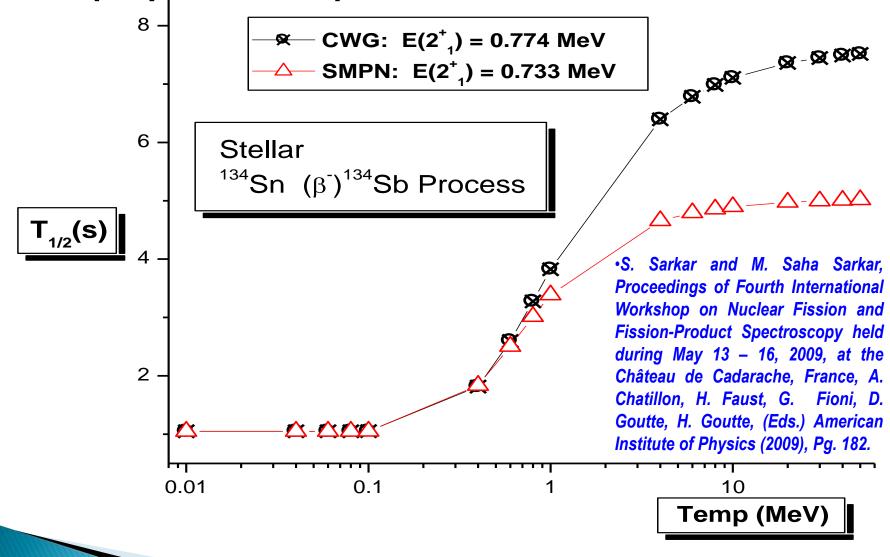
Wave function structure for SMPN



17.4.2012


Neutron Effective Single Particle Energies (ESPE) for CWG and SMPN interactions with increasing neutron numbers


Spin-Tensor Decomposition


Comparison with neutron-rich isotopes

Neutron ESPEs with CWG3M interactions for increasing neutron numbers

Astrophysical Implication

Shell evolution for neutron rich nuclei and the role of pairing – experimental signatures and implications

Exotic domain and Grodzin's formula

$$B(E2;0^+ \to 2^+) = 14.9 \frac{1}{[E_{2^+}/\text{keV}]} \frac{Z^2}{A} [e^2 b^2], \quad (1)$$

Does the Grodzin's formula which gives the systematic dependence of B(E2, $0^+ \rightarrow 2^+$) on E(2⁺), need to be re-formulated in the exotic region of neutron excess?

²⁴Mg : E(2+)=1.369 MeV; B(E2, 0⁺ → 2⁺)=0.0432 (11)e²b² ~21 W.U. ³²Mg: E(2+)=0.886 MeV; B(E2, 0⁺ → 2⁺)=0.039 (7) e²b²~13 W.U.

¹³⁴Te : E(2+)=1.279 MeV; B(E2, 0⁺ → 2⁺)=0.0960 (120) e²b²~4.7 W.u. ¹³⁶Te: E(2+)=0.606 MeV; B(E2, 0⁺ → 2⁺) =0.1030(150) e²b² ~ 5 W.u

S. Raman, C.W. Nestor, Jr., P. Tikkanen, At. Data Nucl.

E(2⁺₁) and B(E2)

Data Tables 78, 1 (2001); http://www.nndc.bnl.gov.

Δ.	Nucleur	NI /7	$\mathbf{F}(2^{\pm})$	$\mathbf{D}(\mathbf{F}2,0^{+})$	· 9+)
A	Nucleus	N/Z	$E(2_{1}^{+})$	$B(E2, 0^+_{g.s.} -$	
				e^2b^2	W.u.
20	Ne	1.0	1.634	0.034(3)	21.09
28	\mathbf{Ne}	1.8	1.310	0.027(14)	10.69
30	\mathbf{Ne}	2.0	0.792	0.046(27)	16.61
24	Mg	1.0	1.369	0.0432(11)	21.01
26	Mg	1.17	1.809	0.0305~(13)	13.33
32	Mg	1.67	0.886	0.0447 (57)	14.81
34	Mg	1.83	0.659	0.0541(102)	16.54
130	Te	1.50	0.839	0.295(7)	15.08
134	Te	1.58	1.279	0.0960 (120)	4.71
136	Te	1.62	0.606	0.1030(150)	4.96

Anomalous B(E2)s in carbon isotopes

Eur. Phys. J. A 42, 393-396 (2009)

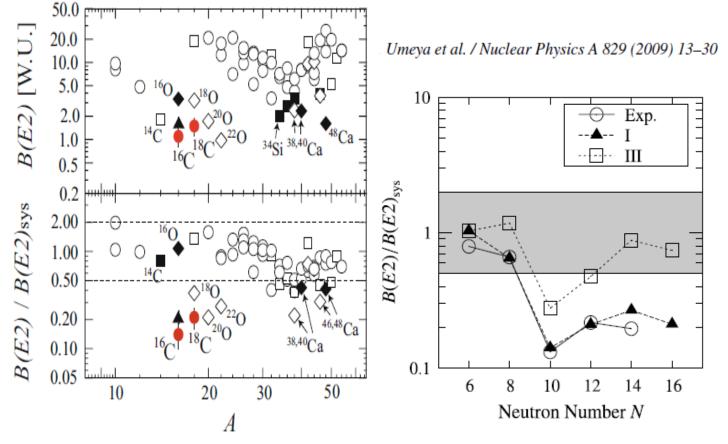
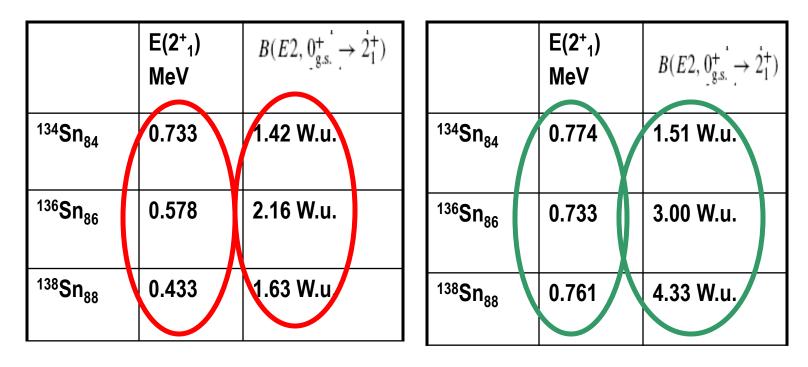
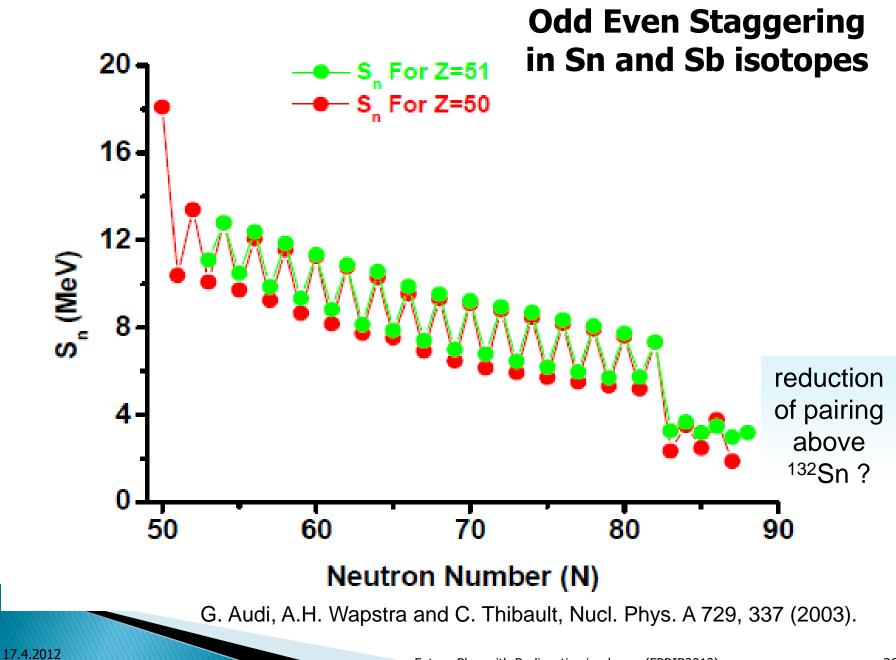



Fig. 4. Ratios of experimental and theoretical B(E2) values to those of the systematics. The theoretical B(E2) values are calculated (I) in the first-order perturbation with the Paris potential and (III) in the $0\hbar\omega$ model space with the traditional effective charges $e_p^{\text{eff}} = 1.3e$ and $e_n^{\text{eff}} = 0.5e$. The experimental value 13.0 e^2 fm⁴ [4] is used for ¹⁶C.

17.4.2012

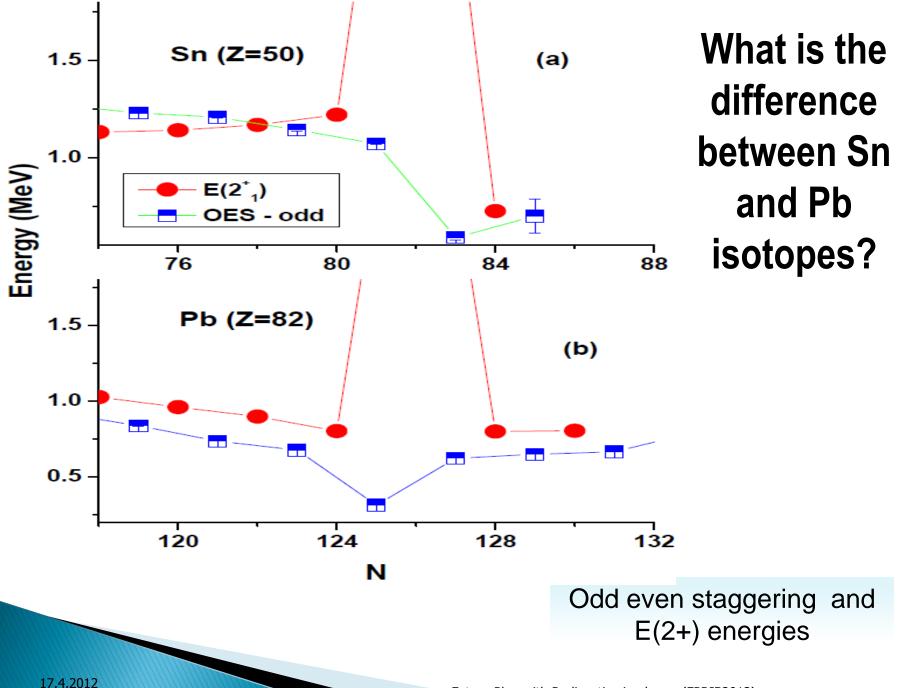

SMPN

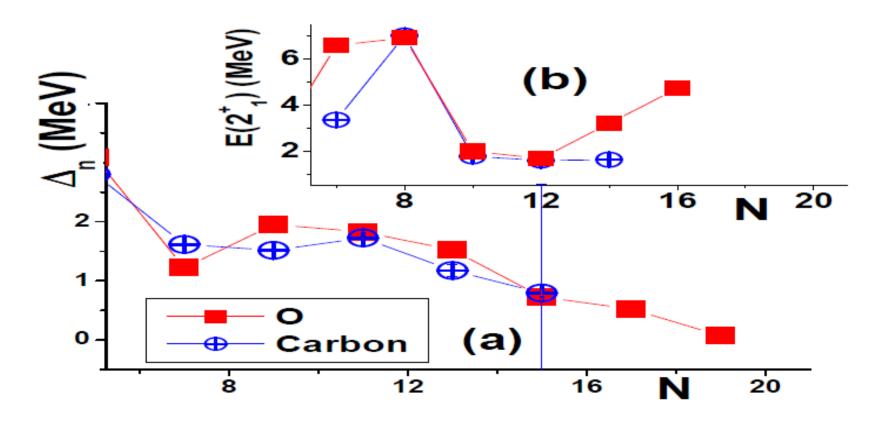
CWG

S. SARKAR AND M. SAHA SARKAR

PHYSICAL REVIEW C 78, 024308 (2008)

Structure of even-even A = 138 isobars and the yrast spectra of semimagic Sn isotopes above the ¹³²Sn core

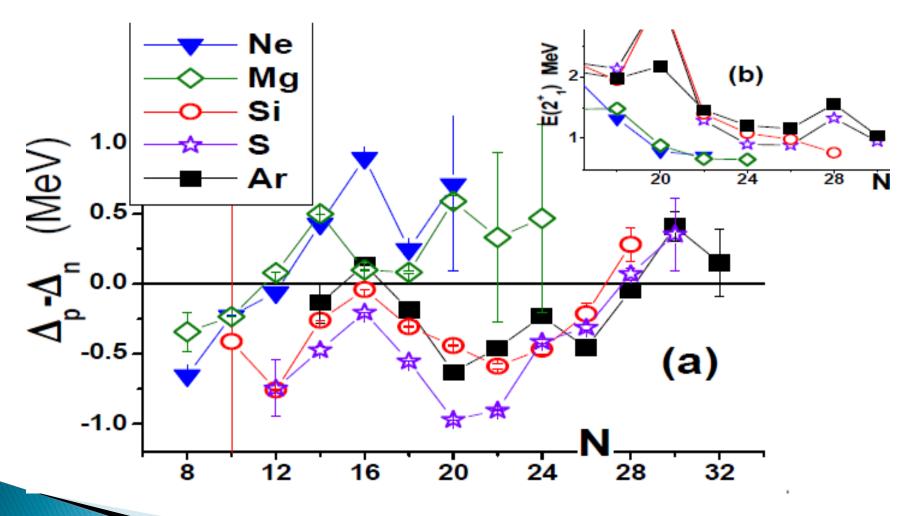



Odd-Even Staggering (OES) and pairing

$$\Delta_n(N,Z) = -(-)^{\pi_N} \frac{1}{2} * (S_n(N+1,Z) - S_n(N,Z))$$

The empirical neutron and proton pairgaps are related to the odd-even staggering of separation energies and masses or binding energies

M. Saha Sarkar and S. Sarkar, Communicated



Variation of (a) Δ_n for odd isotopes, (b) $E(2_1^+)$ energies for even isotopes, of C and O with increasing neutron number (N). Carbon & Oxygen

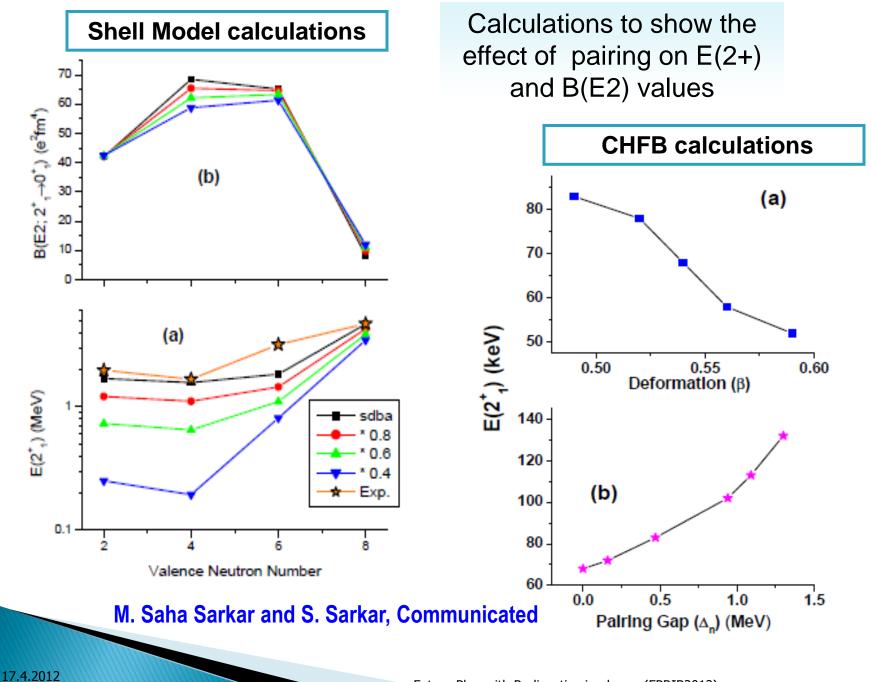
M. Saha Sarkar and S. Sarkar, Communicated

Pairing and E(2⁺) in light nuclei

M. Saha Sarkar and S. Sarkar, Communicated

Empirical observations of the features of neutron-rich nuclei

• For proton - magic nuclei, reduction in neutron pairing will give rise to


– anomalous decrease in $E(2_1^+)$ with slower increase in deformation for isotopes with neutrons in unfilled subshells. For normal pairing observed near stability, similar value of low $E(2_1^+)$'s will indicate higher value of B(E2) or larger deformation.

– appearance of new shell closures manifested through enhancement of $E(2_1^+)$ for isotopes with filled up sub-shells. The energy gap between the sub - shells must be substantially greater than the neutron pairing energy.

• For nuclei with a few valence particles near shell closure having unfilled proton sub-shell, reduced neutron pairing will lead to

– anomalous decrease in $E(2_1^+)$ with slower increase in deformation for isotopes with neutrons in unfilled sub-shells

 onset of deformation for Nmagic nucleus, resulting in erosion of shell gap if proton pairing shows strong enhancement. This will be usually observed for lighter mass nuclei.
 M. Saha Sarkar and S. Sarkar, Communicated

Pairing and deformation

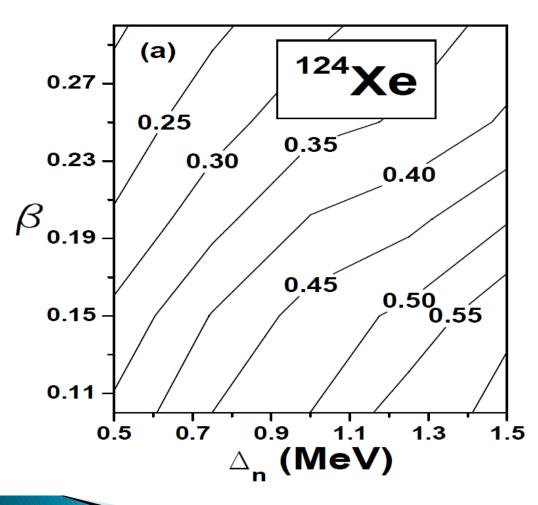
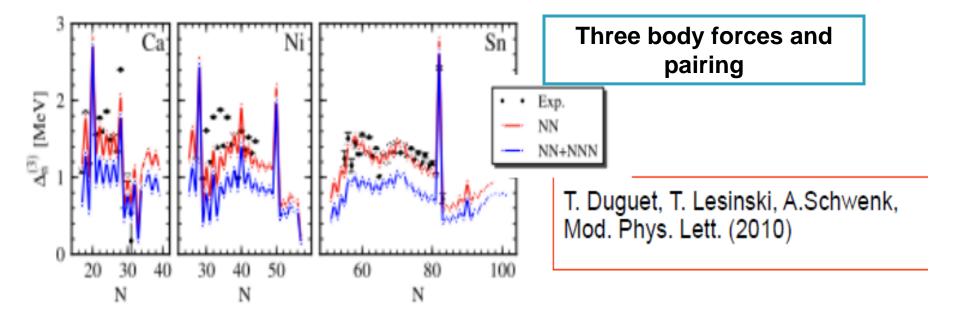
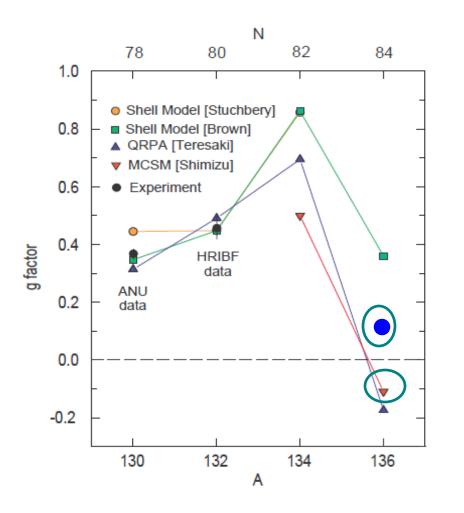


TABLE I: Effects of (a) decrease in neutron pairing strength (g_n) and (b) increase in quadrupole interaction strength, x_2 , on ground state deformation, pairing gaps and $E(2_1^+)$ values of ^{124}Xe . In part (a), the x_2 value is kept constant at 72.0, in (b), the value of g_n is 20.0. The proton pairing strength (g_p) is kept constant at 26.0 in all these calculations. The energies are in MeV.


	g_n	β_2	Δ_p	Δ_n	$E(2_{1}^{+})$
(a)	25	0.087	1.368	1.875	0.773
	20	0.182	1.222	1.047	0.304
	15	0.230	1.171	0.433	0.172
	10	0.261	1.168	0.00003	0.125
	5	0.261	1.168	0.00001	0.114
	x_2	β_2	Δ_p	Δ_n	$E(2_{1}^{+})$
<i>(b)</i>	72	0.182	1.222	1.047	0.304
	77	0.256	1.167	0.834	0.233
	82	0.366	1.116	0.605	0.151


Self Consistent calculations with PPQ Hamiltonian

M. Saha Sarkar and S. Sarkar, Communicated

HFB

Mean field calculation with Vlow-k pairing force: 3-body force reduces the pairing gaps

g-factor (2+) in ¹³⁶Te and other Te isotopes

Andrew E. Stuchbery, ANU

Talk delivered at FIG12, 5-7 March 2012 at IUAC, Delhi

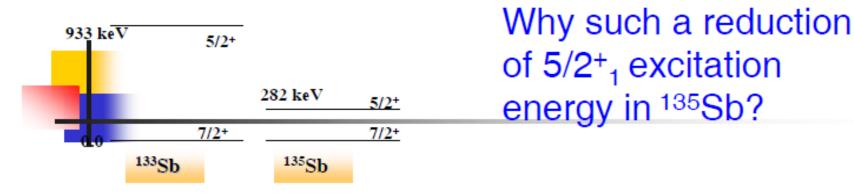
FIG. 11: Theoretical g factors in the Te isotopes compared with experiment. Shell model calculations are from [42, 43]. QRPA is from [44] and MCSM from [45].

The new mass data and SMPN results

- A high-precision direct Penning trap mass measurement ^{127,131-134}Sn, M. Dworschak et al., Phys. Rev. Lett. 100, 072501 (2008).
- The measurement of spectroscopic factors indicating purity of the measured single-particle states, K. L. Jones et al., Nature, 465, 454 (2010).

Nucleus	Binding Energy (MeV)						
	Expt.	t. Theoretical					
[24]		CW5082	SMPN	SMPNEW	NATSPE		
		[4]	[2]	[22]	[23]		
^{134}Sn	6.365(104)	6.705	6.363	6.195	6.211		
	6.031(6)	$5.915(150)^a$					
^{136}Te	28.564(55)	28.86	28.907	28.739	28.757		
^{136}Sn	12.208(501)	13.162	13.041	12.705	12.728		
^{136}Sb	19.516(301)	19.759	20.306	20.055	20.067		
^{135}Sb	16.565(113)	17.017	16.989	16.821	16.836		
^{137}I	37.934(37)	38.011	38.131	37.963	37.981		
^{137}Te	31.775(122)	31.762	32.345	32.093	32.109		
^{135}Sn	8.437(401)	8.926	9.053	8.801	8.814		

J. Hakala et al., arXiv:1203.0958v2 [nucl-ex] 6 Mar 2012; J. Van Schelt et al., arXiv:1203.4470v1 [nucl-ex] 20 Mar 2012.



- Measurement of 2⁺ state energies of ¹³⁶Sn, ¹³⁸Sn
- Measurement of B(E2, 0⁺→ 2⁺) for these isotopes of Sn
 - T_{1/2} (136Sn) = 0.25 s
 - T_{1/2} (138Sn) = ??

 Need for precise mass data for more neutron-rich species. Anomalous depression of 5/2⁺ state in ¹³⁵Sb

135 Sb		2 <u>3/2⁺ 275</u> 3
$\frac{23/2^{+}}{17/2^{+}}$ 1898	$23/2^{+}$ 1971 $17/2^{+}$ 1475	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\frac{19/2^{+}}{15/2^{+}} \frac{1305}{1124}$ $\frac{11/2^{+}}{711}$	$ \frac{1}{19/2^{+}} = \frac{1473}{1343} $ $ \frac{1}{15/2^{+}} = \frac{1343}{1118} $ $ \frac{1}{11/2^{+}} = \frac{707}{707} $	1 <u>1/2⁺ 1066</u>
$5/2^{+}$ 690 $7/2^{+}$ 0	$5/2^+$ 282 $7/2^+$ 0	5 <u>/2</u> + 618 7 <u>/2</u> + 0
SMN	Expt.	CW5082

Future Plan with Radioactive ion beam (FPRIB2012)

This 5/2⁺₁ state in ¹³⁵Sb corresponds to a proton coupled to the ¹³⁴Sn core

- arises mainly from [(π2d_{5/2})⊕ (ν2f_{7/2}²)⁰⁺]^{5/2+} and
- •partially from $[(\pi 1g_{7/2}) \oplus (\nu 2f_{7/2}^2)^{2+}]^{5/2+}$ configurations.
- Shell model calculations with different (1+2) body Hamiltonians also

•The energy of this state seems anomalous ---likely due to a high neutron excess that decreases the relative separation energy between the $d_{5/2}$ and $g_{7/2}$ orbitals.

This idea can be examined via combined experimental and theoretical studies.

For odd-odd nuclei the 6⁻ state arising from the coupling of proton 2d_{5/2} and neutron 2f_{7/2} carries the signature of 2d_{5/2} depression: already seen in ¹³⁶], ¹³⁸], ¹³⁸Cs

PROPERTY OF THE GROUND STATE (7/2⁺)

		THEORY			
PROPERTIES	EXPERIMENT	SMPN	DSMP570	CORAGGIO [PRC 72 (2005)057302]	
WAVEFUNCTION	-	A : 65.2%	A : 64.7%	A : 75.7%	
Magnetic moment (µ _N) ¹		1.49	1.47	1.70	

A: $[(\pi 1g_{7/2}) \odot (\nu 2f_{7/2}^2)^{0+}]^{7/2+}$

PROPERTY OF THE EXCITED STATE $(5/2^+)$

			THEORY	ORY		
PROPERTIES	EXPERIMENT	SMPN	DSMP570	CORAGGIO [PRC 72 (2005)057302]		
ENERGY (MEV)	0.282	0.690	0.282 (fitted)	~0.382		
WAVEFUNCTION		B : 30%, C : 32%	B:55%, C:3%	B:45%, C:23%		
τ _{1/2} (ns)	6.0 (7)	~0.06	1.3	0.07		
В(М1) _{мах} (5/2 ⁺ →7/2 ⁺) µ _N ²	0.29×10-3	37 '×10 ⁻³	1.2×10 ⁻³	25.×10 ⁻³		
Magnetic moment (µ _N) ¹	-	1.84	3.94	1.88		
G factor	-	0.74	1.58			

Proposal

- Measurement of Magnetic moment of the anomalously low first 5/2⁺ state of ¹³⁵Sb.
 - T_{1/2} (5/2⁺) = 6.1(4) ns.
 - Ground state spin 7/2+
 - T_{1/2} (g.s)= 1.679 s

THANK YOU

17.4.2012

Future Plan with Radioactive ion beam (FPRIB2012)

Construction of the new Hamiltonian

- Modification of the CW5082 [W.T. Chou and E.K. Warburton, Phys. Rev. C 45, 1720 (1992)] Hamiltonian in the light of recently available information on binding energies, low-lying spectra of A=134 Sn,Sb and Te isotopes.
- The spes of the single particle orbitals of the valence space above the ¹³²Sn core have been replaced by the recently measured ones.
- The details of this modification procedure have been given in [Sukhendusekhar Sarkar, M. Saha Sarkar, Eur. Phys. Jour. A 21 (2004) 61].
- The new Hamiltonians work remarkably well in predicting binding energies, low-lying spectra and electromagnetic transition probabilities for N=82,83 and even for N >= 84 isotones of Sn,Sb,Te,I,Xe and Cs nuclei.

Procedure SINGLE PARTICLE ENERGIES (SPES)

modified the CW5082 interaction. The valence space consists of five proton orbitals, $[1g_{7/2}, 2d_{5/2}, 2d_{3/2}, 3s_{1/2} and 1h_{11/2}]$] with energies [0.(-9.6629), 0.9624, 2.4396, 2.6972, 2.7915] respectively, and

 $[1h_{9/2}, 2f_{7/2}, 2f_{5/2}, 3p_{3/2}, 3p_{1/2} and 1i_{13/2}]$ for neutrons with energies in MeV, [1.5609, 0.0 (-2.4553), 2.0046, 0.8537, 1.6557, 2.6950], respectively with ¹³²Sn as the inert core. **CHANGE IN TWO BODY MATRIX ELEMENTS (TBMES)** In SMN

change the neutron-neutron and proton-neutron tbmes keeping the proton-proton tbmes the same as those in **CW5082**.

In SMPN change the neutron-neutron, proton-neutron AND proton-proton tomes Euture Plan with Radioactive ion beam (FPRIB2012)

Changes in two body matrix elements (tbmes)

Neutron-neutron tbmes

- The six neutron-neutron diagonal thmes with I = 0⁺ were multiplied by a factor of 0.48. This factor is obtained by reproducing the binding energy of ¹³⁴Sn (-6.365 MeV). All the binding energies in MeV are with respect to ¹³²Sn.
- Three excited states in ¹³⁴Sn, predominantly from the neutron (2f_{7/2})², at energies 725.6, 1073.4, and 1247.4 keV are used to modify the

 $<(2f_{7/2})^2 |V| (2f_{7/2})^2 > {2+,4+,6+}$ tbmes for neutrons.

- < $(1h_{9/2} 2f_{7/2}) |V| (1h_{9/2} 2f_{7/2}) > {8+} changed to reproduce the energy of 8^+ level at 2508.9keV.$
- neutron proton tbmes
 - Similarly, using binding energy (-12.952 MeV) and 1⁻, 2⁻, 3⁻, 4⁻, 7⁻, 8⁻, 10⁺, 9⁺, 10⁻, 11⁻ and 12⁻ excited levels at energies 13.0, 330.7, 383.5, 554.8, 283.0, 1073, 2434, 2126, 4094, 4425 and 4517 keV respectively, of ¹³⁴Sb, we have modified 12 dominant proton-neutron tbmes.

TABLE I: The relevant these of CW5082 [3], CWG [6] and SMPN [2] have been compared. The valence orbitals have been enumerated according to the following convention: PROTONS : $1g_{7/2}(1)$, $2d_{5/2}(2)$, $2d_{3/2}(3)$, $3s_{1/2}(4)$, $1h_{11/2}(5)$; NEUTRONS: $1h_{9/2}(6)$, $2f_{7/2}(7)$, $2f_{5/2}(8)$, $3p_{3/2}(9)$, $3p_{1/2}(10)$, $1i_{13/2}(11)$

	Ind			- T	m	T	r '1		
1	na	ices	\$	J	Т	CW5082	lamilton CWG	Ians SMPN	
	41					CW 5062	CWG	SMPN	
n-p 1	7	me 1	s 7	0	0	-0.6778	-0.7922	-0.7355	
1	7	1	7	1	0	-0.0778	-0.7922	-0.743	
1	7	1	7	2	_				
1	7	1	7	_	0	-0.29336119		-0.4067	
1	7	1	-	3	0	-0.30348513		-0.354	10
1	7	1	7 7	4	0	-0.09123172		-0.227	12 n-p
-	•	-	-	7	0	-0.42997605		-0.535	_
1	6	1	6	8	0	-0.68749624		-1.037	tbmes
1	11	1	11	10	0	-0.61499959		-0.764	
5	7	5	7	9	0	-0.57939130		-1.058	
	11	5	11	10	0	-0.08622793		-1.942	
5	11	5	11	11	0	-0.12218534		-1.611	
5	11	5		12	0	-0.75382543	-1.1495	-1.519	
p-p	tb	me		_	_				1 10 10
1	1	1	1	0	1	-0.66390	-0.9972	-0.56100	4 p-p
1	1	1	1	2	1	0.16450	-0.2838	0.2050	
1	1	1	1	4	1	0.38240	-0.0257	0.5682	tbmes
1	1	1	1	6	1	0.43640	0.1008	0.5120	
				air	ing	g terms			
6	6	6	6	0	1	-0.61197406			
$\overline{7}$	7	$\overline{7}$	7	0	1	-0.48571584	-0.6718	-0.233143598	6 n-n : 0
8	8	8	8	0	1	-0.27602252	-0.4515	-0.132490814	• • • • • •
9	9	9	9	0	1	-0.37947276	-0.5884	-0.182146922	tbmes
10	10	10	10	0	1	-0.10030835	-0.1606	-0.0481480062	IDITIES
11	11	11	11	0	1	-0.70925683	-0.9751	-0.340443283	
n-n	tb.	me	s						
$\overline{7}$	$\overline{7}$	$\overline{7}$	$\overline{7}$	2	1	-0.31314358	-0.2983	-0.453	4 n-n
$\overline{7}$	$\overline{7}$	$\overline{7}$	$\overline{7}$	4	1	-0.05632162	-0.0909	-0.29	
$\overline{7}$	$\overline{7}$	$\overline{7}$	$\overline{7}$	6	1	0.05457612	0.0011	-0.162	tbmes
6	7	6	7	8	1	-0.25914928	-0.3974	-0.495	IDITIES

The

modified two body matrix elements (tbmes) of SMPN

The implication of ALS term?

•ALS component in the tbmes corresponds to those

•LS-coupled matrix elements which have S≠S', i.e., terms non-diagonal in S (spin). Do not conserve total spin of the matrix elements.

•But the interactions which are parity conserving and isospin conserving must also conserve the total spin.

•Bare nucleon- nucleon force contains no ALS term.

• But effective interaction is not simply related to bare nucleon-nucleon force. Core polarisation corrections to the G-matrix give rise to non-zero but small ALS matrix elements.

•A characteristic feature common to many **empirical effective interactions is strong ALS components** in the tbmes.

•It usually arises from inadequate constraint by the data.

•It indicates the important contributions from higher order renormalisation or many body forces to the effective interactions.

•In empirical SMPN such many - body effects might have been included in some way through the modification of important the thres.

137		$\frac{33/2^+}{31/2^+} \frac{4588}{4510}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\frac{23/2^+}{21/2^+} \frac{2262}{2053}$	$\frac{23/2^+}{21/2^+}$ 2038	$21/2^+$ 2427 $19/2^+$ 1988
$ \frac{19/2^{+}}{17/2^{+}} \frac{1507}{1382} \\ \frac{15/2^{+}}{13/2^{+}} \frac{1116}{1051} $	$ \underbrace{\frac{19/2^{+}}{15/2^{+}} \frac{1609}{1109}}_{13/2^{+}} \underbrace{\frac{17/2^{+}}{1313}}_{13/2^{+}} \underbrace{954}_{13/2^{+}} $	$ \begin{array}{r} \frac{17/2^+}{15/2^+} & 1562\\ \hline 15/2^+ & 1380\\ \hline \hline 13/2^+ & 1223\\ 9/2^+ & 853 \\ \end{array} $
$ \frac{9/2^{+}}{11/2^{+}} \frac{686}{606} \\ \frac{5/2^{+}}{5/2^{+}} \frac{406}{255} \\ \frac{5/2^{+}}{7/2^{+}} 0 $	$ \begin{array}{r} \underline{11/2^{+}} & \underline{620} & \underline{9/2^{+}} & \underline{554} \\ $	$ \begin{array}{r} 1\overline{1/2^+} & 804 \\ 5/2^+ & 455 \\ 5/2^+ & 309 \\ 7/2^+ & 0 \end{array} $

SMN

Expt.

CW5082

Future Plan with Radioactive ion beam (FPRIB2012)

SM	1N		Expt.		SN	IPN
7/2-	0				7/2-	0
5/2	97	7/2-		0	5/2-	93
11/2	072	11/2	608		11/2	637
9/2 ⁻ 11/2 ⁻	<u>802</u> 642		(08		9/2	787
15/2-	1148	15/2-	1141 _{(13/2} -)	1101	15/2-	1150
13/2	1238	15/2-			13/2-	1233
<u>17/2⁻</u>	1589		17/2-	1477	<u>17/2</u> -	1567
19/2	1783	19/2	1723		19/2	1760
<u>21/2</u>	2177		$(21/2^{-})$	1996	<u>21/2</u>	2170
		(25/2)	2170			
23/2	2506	(23/2)	2490	2132	23/2-	2493
25/2-	2953		(25/2-)	2732	25/2-	2943
27/2-	3063	(27/2)	3075	5215	27/2	3036
29/2	3416		(29/2))	3273	29/2	3421
33/2	3606	(31/2)	3627		33/2	3592
31/2	3979				<u>31/2</u>	3961

1 <u>7</u> -	5283	$(17, 16^{\pm})$	<u>516</u> 0	17-	5216
15	4888	(<u>15</u> [±])	<u>479</u> 4	15	4820

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} & \underline{14^{+}} & \underline{3720} \\ & (\underline{10,^{+}9^{-})} & \underline{3340} \\ & \overline{12^{+}} & \underline{3187} \\ & \underline{10^{+}} & \underline{2792} \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
<u>8⁺ 2189</u>	<u>10⁺ 2792</u> <u>8⁺ 213</u> 2	<u>8+</u> 2172
$ \frac{6^{+}}{4^{+}} \frac{1399}{1084} \frac{2^{+}}{654} $		$ \frac{6^{+}}{4^{+}} \frac{1396}{1085} \frac{2^{+}}{648} $
<u>₀+ 0</u> SMN	<u>₀⁺ 0</u> Expt.	<u>₀⁺</u> SMPN

Future Plan with Radioactive ion beam (FPRIB2012)

Pairing and Neutron —rich Nuclei

Terasaki et al. traced the origin of this anomalous behaviour in ¹³⁶Te isotope to a reduced neutron pairing above the N=82 magic gap. (PRC 66, 054313 (2002))

 Possible quenching of the neutron pairing gap while approaching the drip line for neutron-rich nuclei to the nuclear systems found in the crust of a neutron star (PRC 81, 045804 (2010)).

•The primary difference of improved empirical interaction SMPN with realistic CWG. Much weaker six neutron-neutron diagonal thmes with $I^{\pi}=0^+$, in SMPN •Interestingly, the SMPN interaction predicted the "anomalous" behaviour of the neutron -rich Sn nuclei, viz., decrease in both the $E(2^+_1)$ and B(E2) values with increasing neutron number.

Signoracci et al. discussed that for neutron -rich nuclei in the sd-fp space - a reduction in the size of matrix elements - most notable for pairing matrix elements (PRC 83, 024315 (2011).

In the SDPF-U interaction Nowacki and Poves used different neutron-neutron pairing matrix elements for $Z \ge 15$ and for $Z \le 14$ (reduced) to account for 2p-2h excitations of the core correctly (PRC 79, 014310 (2009)).

Nuclear deformation in neutron-rich nuclei

- On stability, for E2 transitions, experiments and theoretical calculations show a general trend that even–even nuclei with a small 2⁺ excitation energy *E*(2⁺ 1) have a large *B*(E2; 0⁺ g.s. →2⁺ 1) value .
- Recently, compared to the systematics, the neutron-rich ¹⁶C, ¹⁸C and ²⁰C isotopes, which have 2–6 more neutrons than the magic number N = 8, were found to have small B(E2) values.
- In heavier nuclei, after observation of reduction of both E(2⁺ 1) and B(E2) in ¹³⁶Te, Terasaki et al. from QRPA calculations, traced the origin of this anomalous behaviour in ¹³⁶Te isotope to a reduced neutron pairing above the N=82 magic gap.
- Around this period, new empirical interactions proposed for neutron rich isotopes above the ¹³²Sn core and later those for neutron rich nuclei in the sd – fp shell also included reduction of pairing matrix elements for better reproduction of data. So these studies indicate an important role of pairing in the evolution of the structure of exotic nuclei.