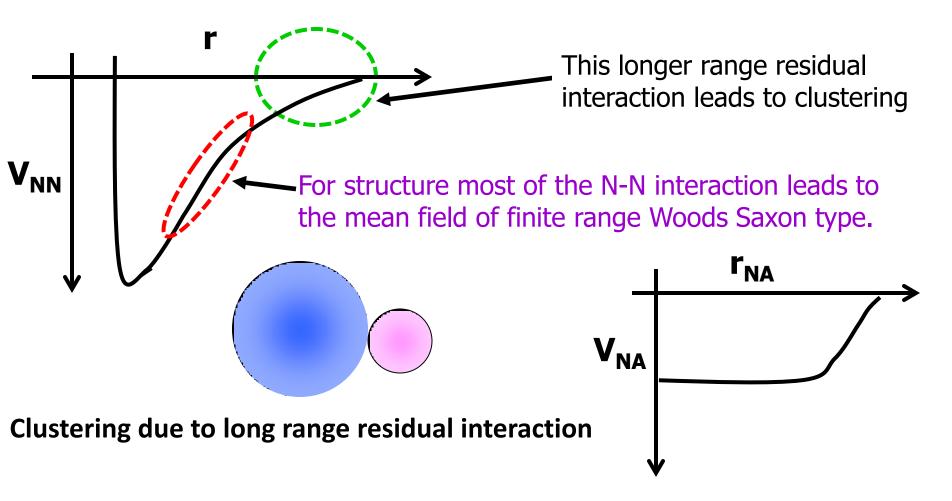
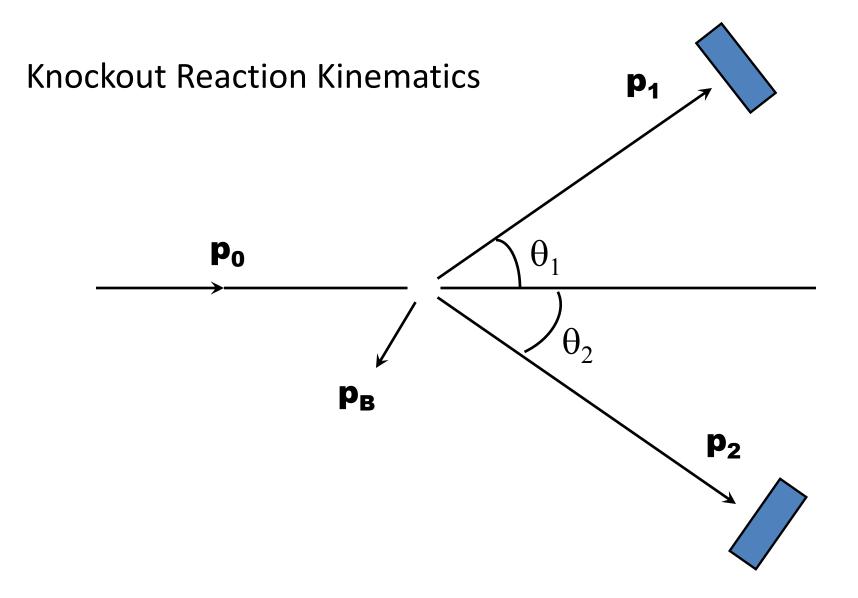
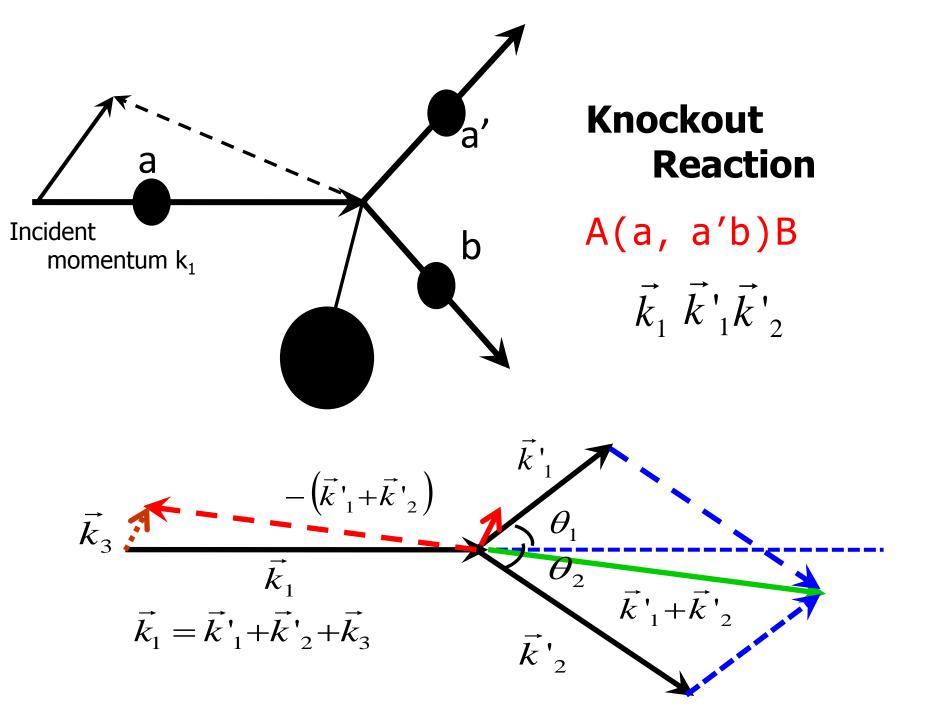
Nuclear Surface Unveiled by Knockout Reactions. Arun K Jain

Nuclear Physics Division, B.A.R.C., Mumbai.

N-N Interaction has a complicated nature (provided to it by the strong coupling finite mass mesons), it has strong short range repulsion (almost a hard core of ~ 0.5 to 0.6 fm) and a finite short range, but a comparatively longer range, ~ 2 fm strong attraction.







If b were free then

$$k_3 = -k_3 = 0$$

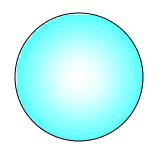
 $\vec{k_1} = \vec{k'_1} + \vec{k'_2}$ $E_1 = E'_1 + E'_2$

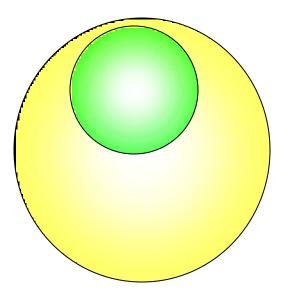
If the particle is bound by a few *MeV*, then

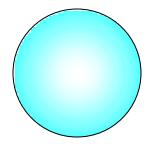
 $E_0 = E'_1 + E'_2 + Q$

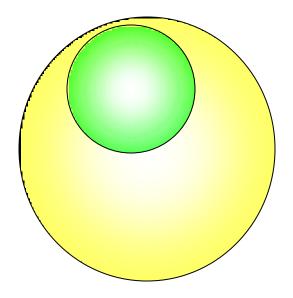
as the Q is (- ve)

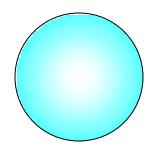
 E'_1 and E'_2 are $< E_1$ and E_2 respectively. Hence k'_1 and k'_2 are $< k_1$ and k_2 respectively. and θ_1 and θ_2 of k'_1 and k'_2 will be slightly < that of free scattering.

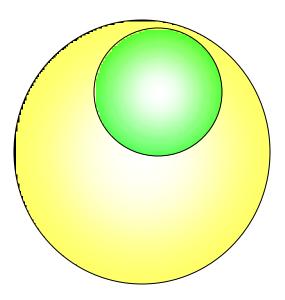


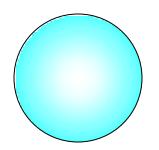


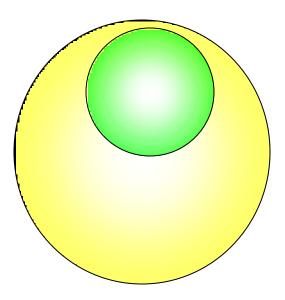


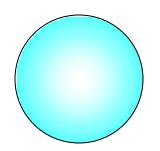


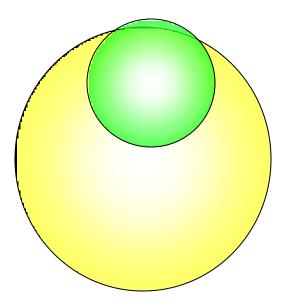


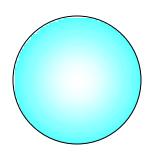


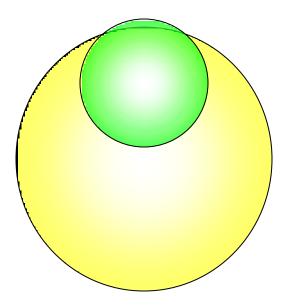


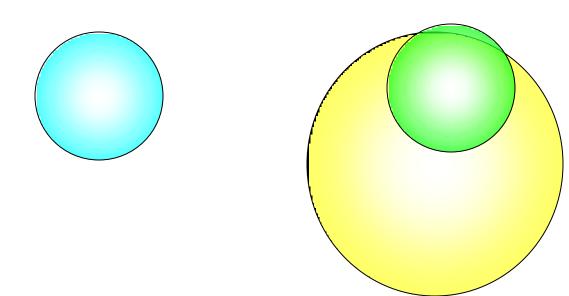


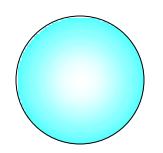


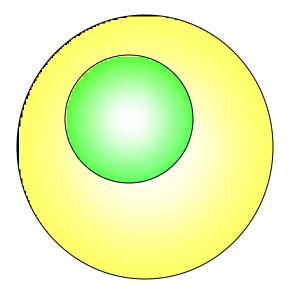


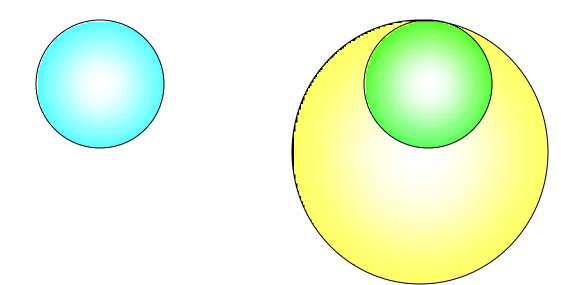


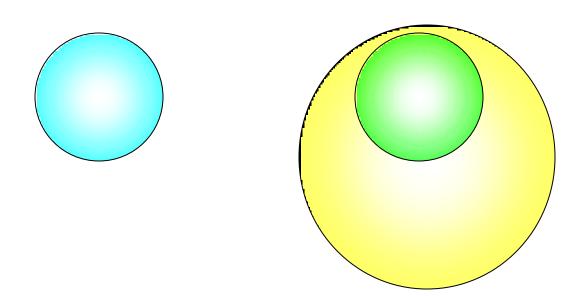


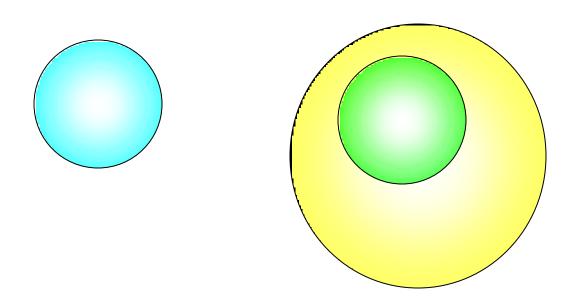


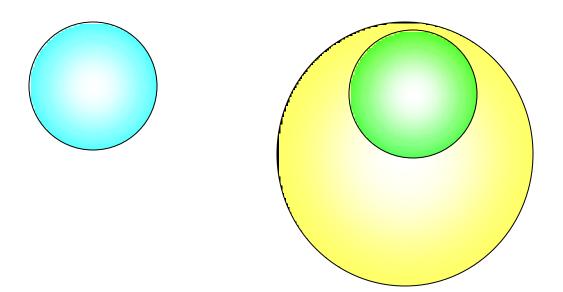


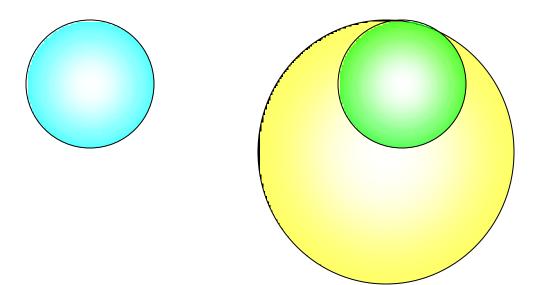


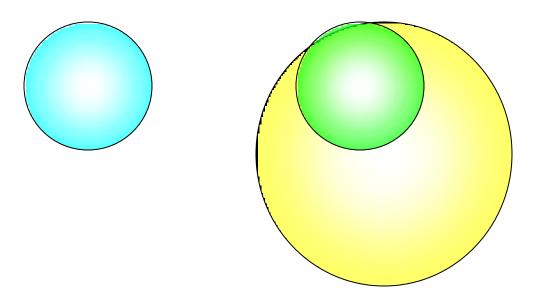


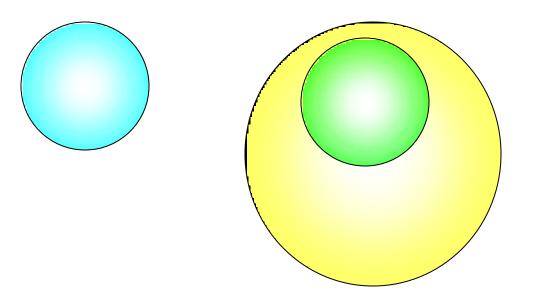


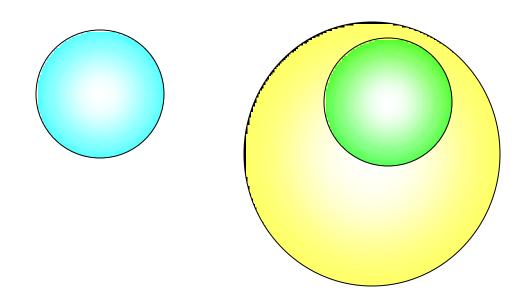


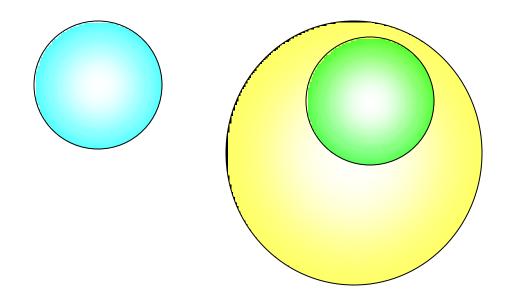


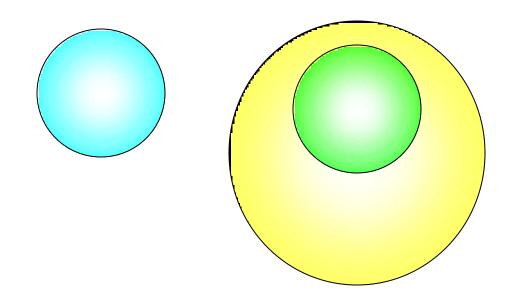


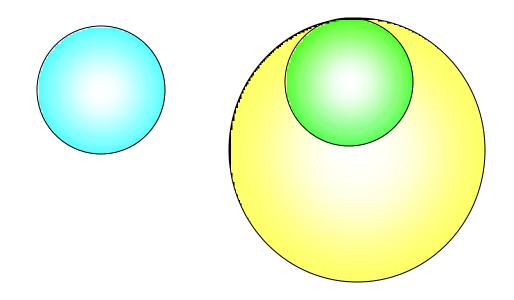


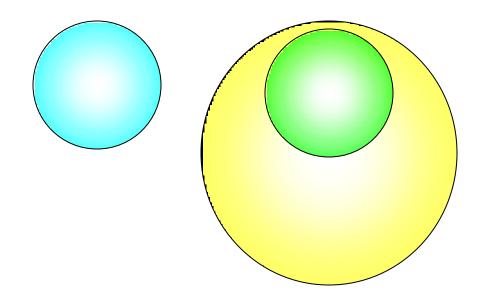


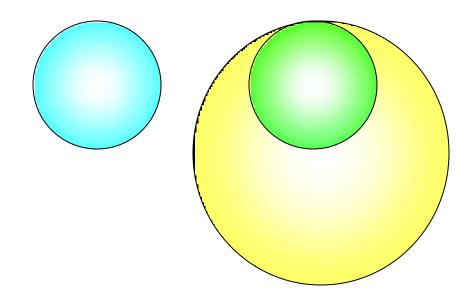


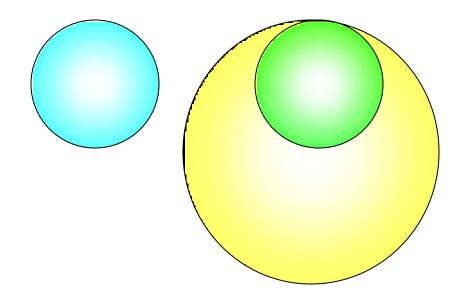


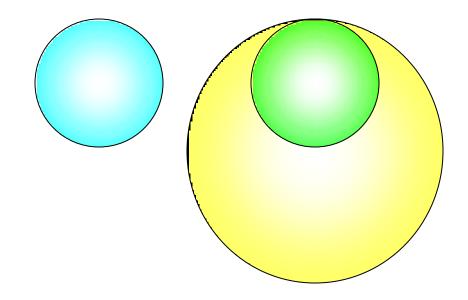


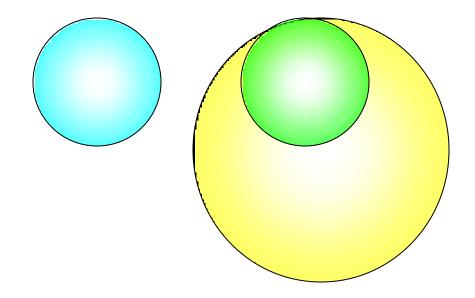


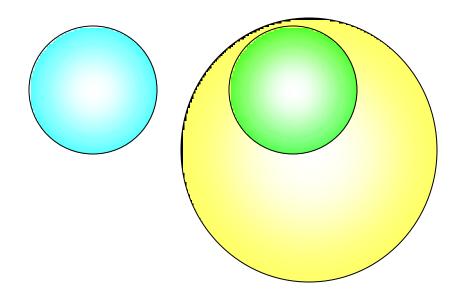


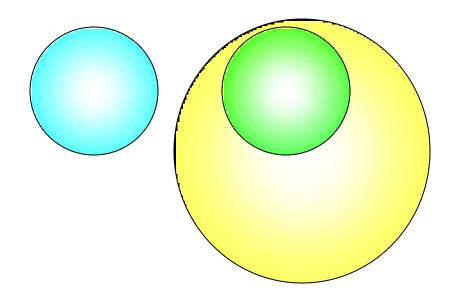




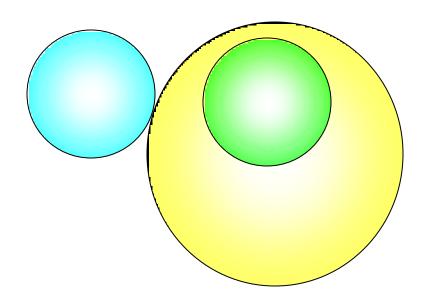


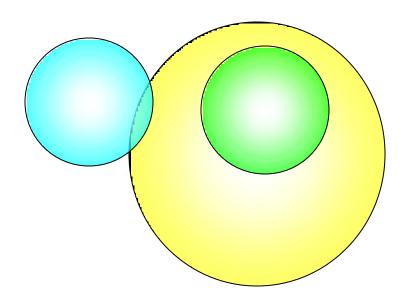


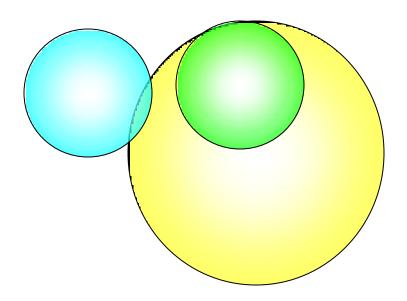


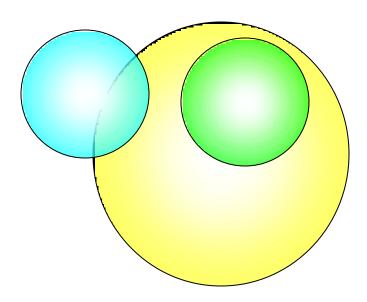


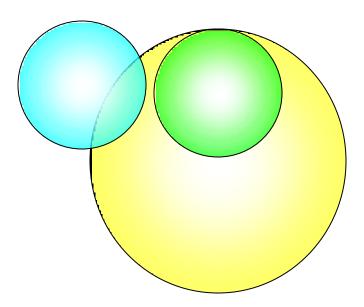


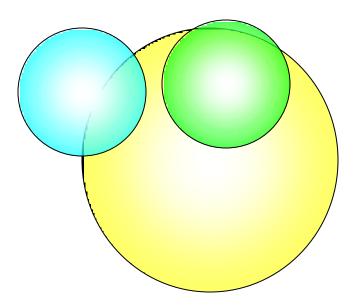


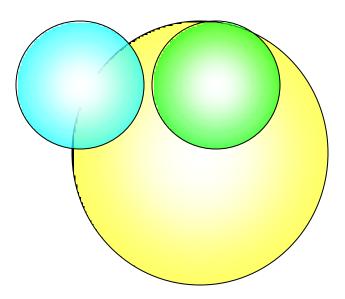


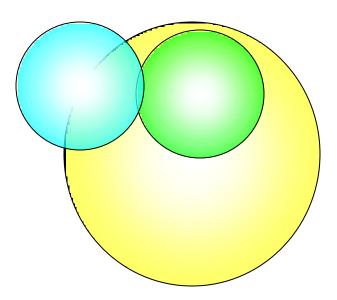


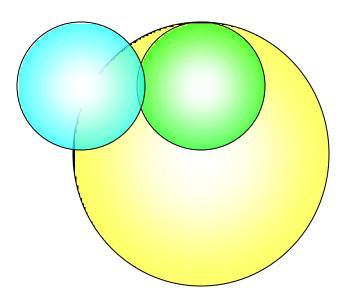


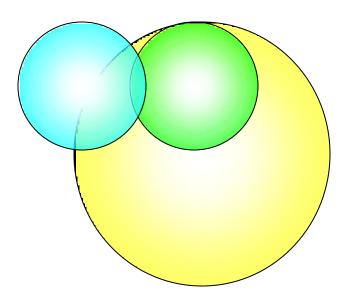


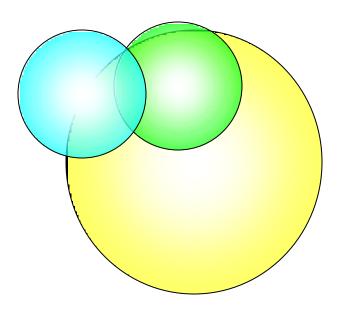


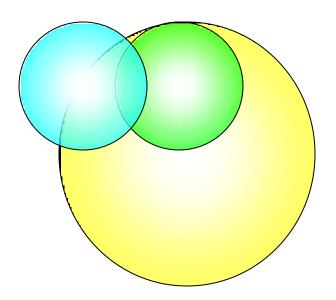


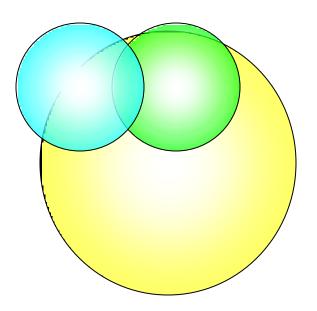


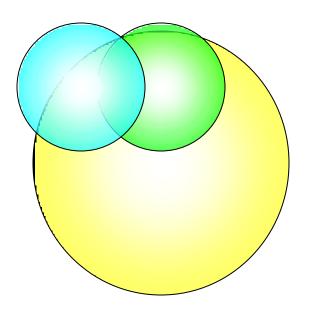


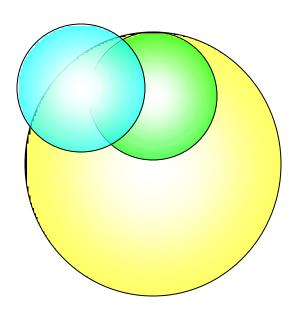


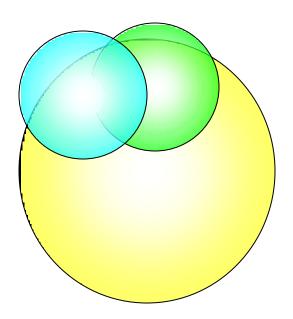


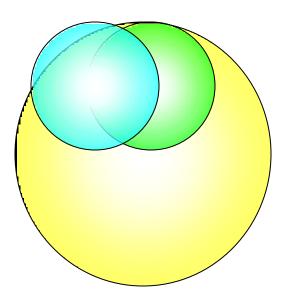


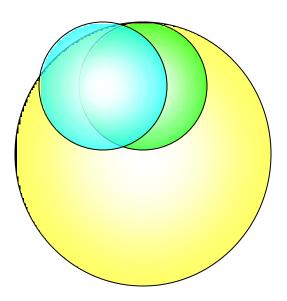


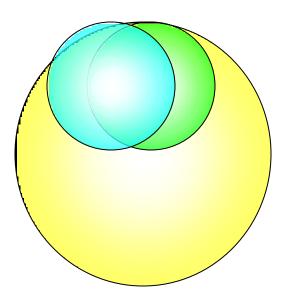


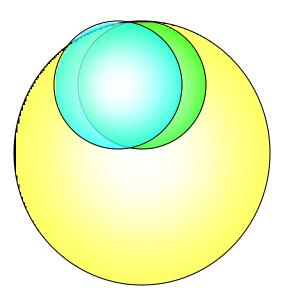


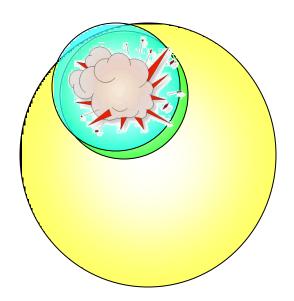


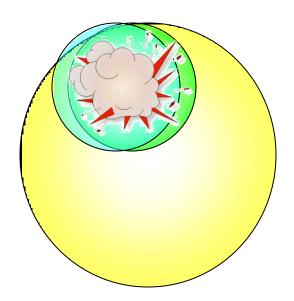


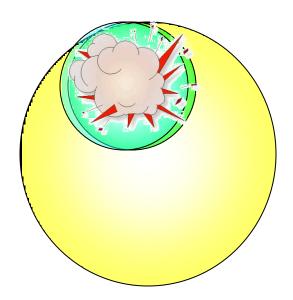


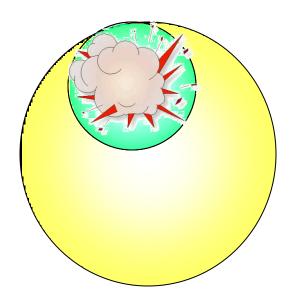


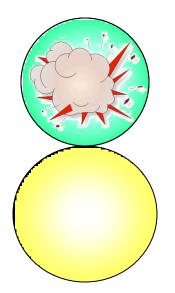


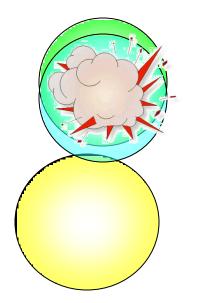


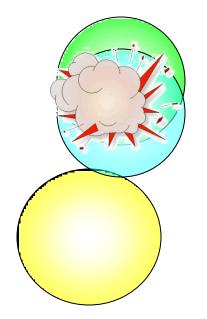


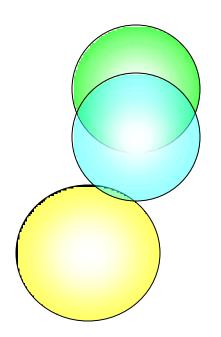


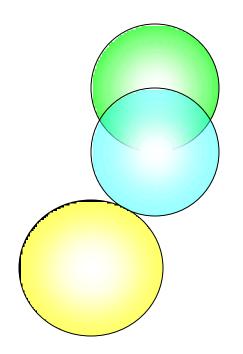


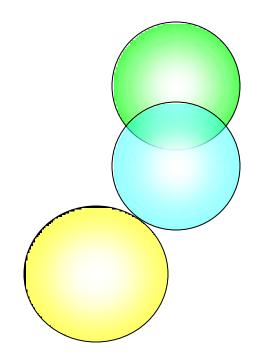


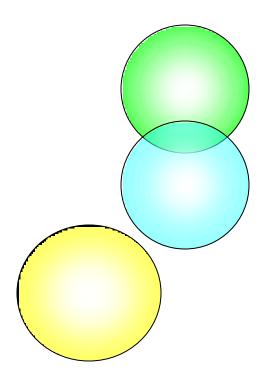


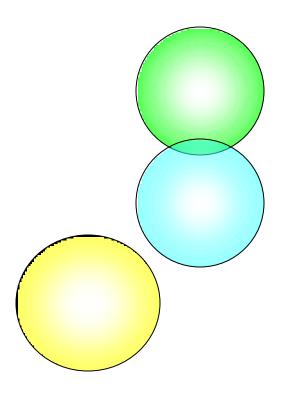


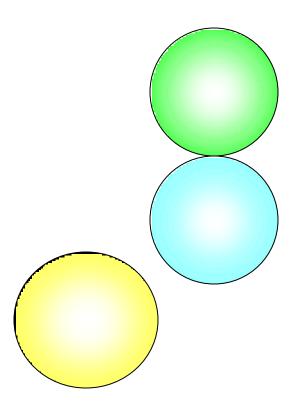


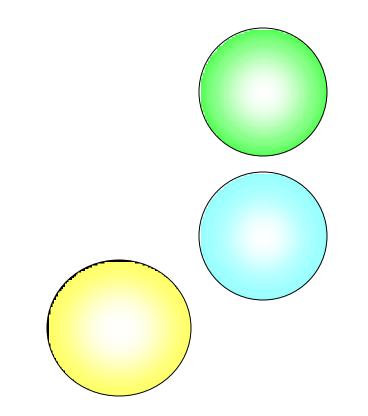


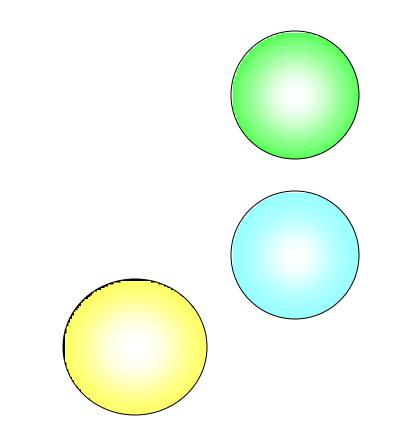


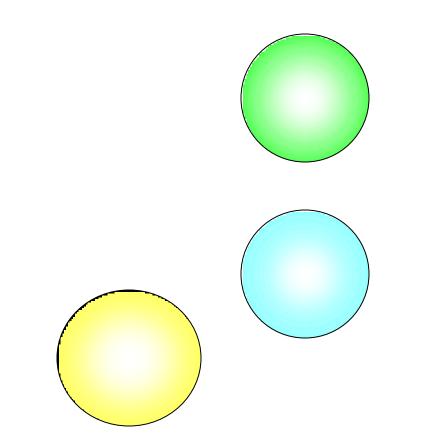


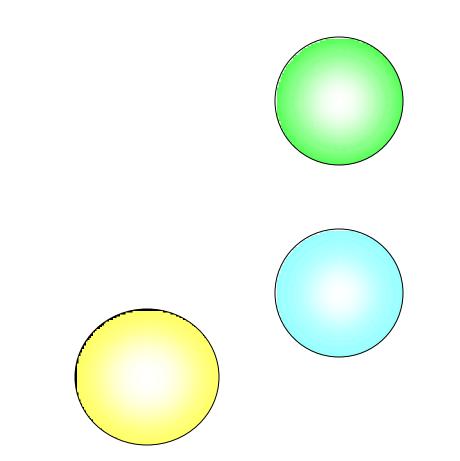


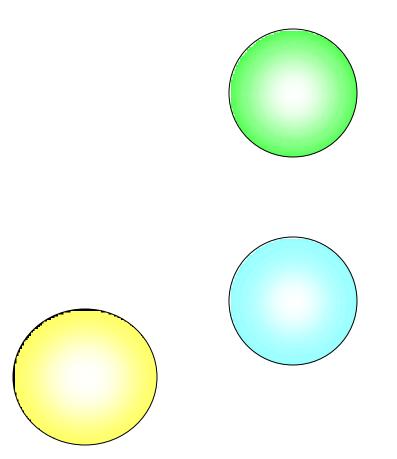


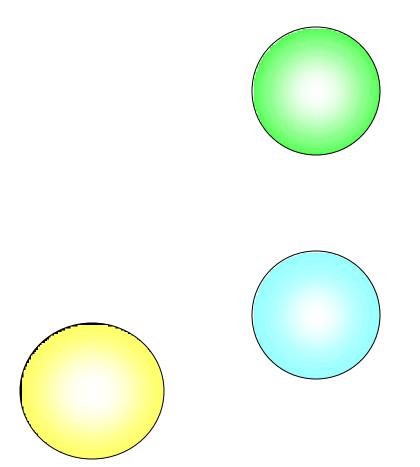


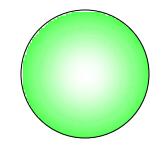


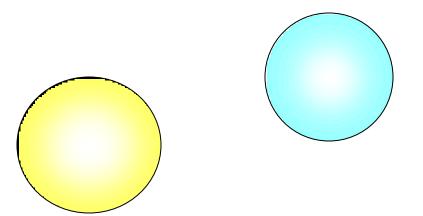


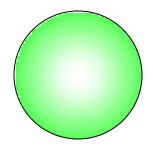


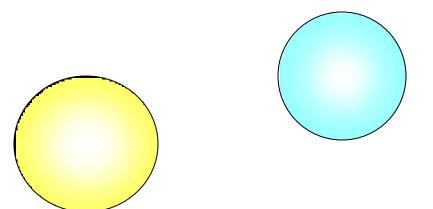


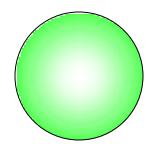


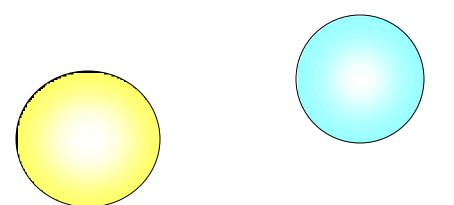


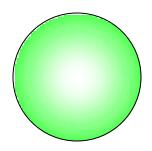


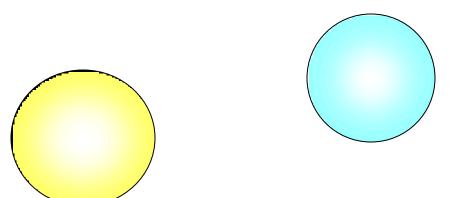


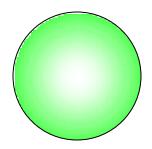


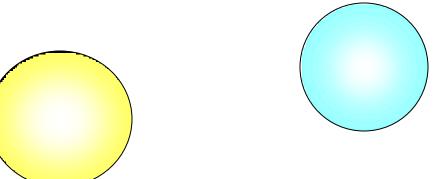


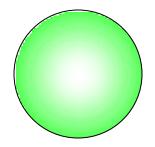


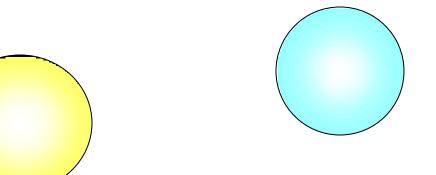


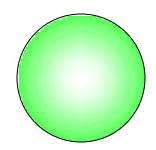


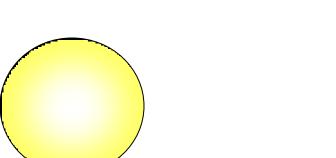


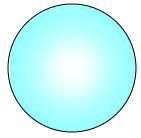


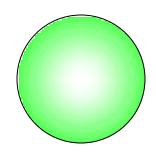


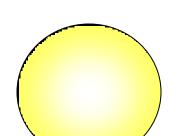


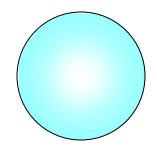


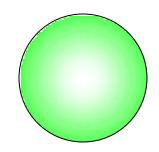


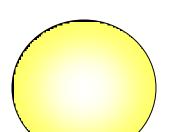


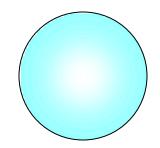


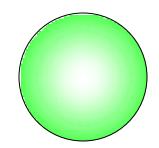


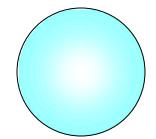


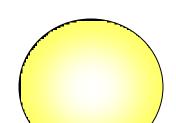


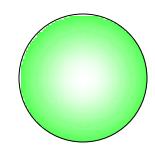


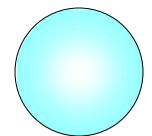


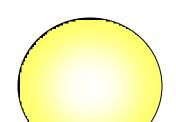


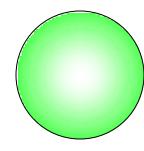


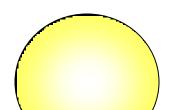


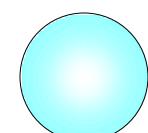


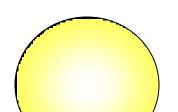


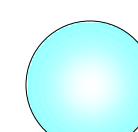


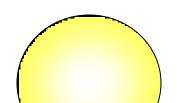


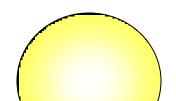


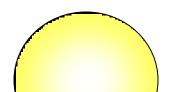


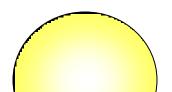


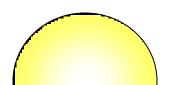












From Transfer Reactions one obtains reasonable relative spectroscopic factors.
For Knockout Reactions one uses quasi free scattering approx. or Distorted Wave Impulse Approximation (DWIA).
(α, 2α), knockout reaction cross section = product of kinematic factor,

 α - α Cross section and

Distorted wave form factor, (~Fourier transform of Wfn).

$$\frac{d^{3}\sigma}{d\Omega_{1}d\Omega_{2}dE_{1}} = KF \cdot S_{LJ} \cdot \left(\frac{d\sigma}{d\Omega}\right)_{ab} \sum_{\Lambda} \left|T_{BA}^{LJ}(Q)\right|^{2} \cdot$$

 \mathbf{S}_{L} is the cluster spectroscopic factor for specific L and J.

The transition amplitude may be written as :

$$T_{BA}^{LJ}(Q) = (2L+1)^{-1/2} \int \chi_{aB}^{(-)^*}(\vec{k}_{aB},\vec{R}) \cdot \chi_{bB}^{(-)^*}(\vec{k}_{bB},\vec{R}) \cdot \chi_{aA}^{(+)}(\vec{k}_{aA},\varepsilon\vec{R}) \cdot \phi_{LJ}(\vec{R})d\vec{R}.$$

Here $\varepsilon = B/A$.

Ground State spectroscopic factors S_a for ¹⁶O(a, 2a)¹²C

Εα	S _{o+}	$\sigma_{_{ m PW}}$ / $\sigma_{_{ m DW}}$
Theory	0.23	-
850 <i>MeV</i>	< 1.8	5.4
90 <i>MeV</i>	15	~1500
52.5 <i>MeV</i>	150	~3200

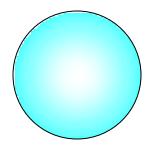
Ground State spectroscopic factors *S_a* for ¹²C(a, 2a)⁸Be at **139 MeV** and **200 MeV 139** *MeV* **200** *MeV* **Ratio** 17 **0.48** 35 Theory **0.55 0.55**

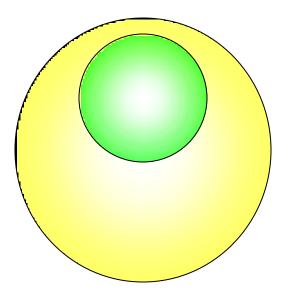
Discrepancy between Proton and Alpha inducted Cluster Knockout Reactions

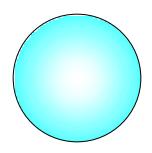
Here Spectroscopic Factor *Sa* is seen to be almost ~2-orders of magnitude too large

Reaction	θ ₁ -θ ₂	P3 (MeV/c)	Spectroscopic factor (Sa)
¹⁶ O(p,pd) ¹⁴ N	40.10-40.00	~41	0.43
¹⁶ O(p,pt) ¹³ N	40.1 ⁰ -40.0 ⁰	~51	3.4
¹⁶ O(a,ad) ¹⁴ N	9.0 ⁰ -43.99 ⁰	~4	55
¹⁶ O(a,at) ¹³ N	25.81 ⁰ -43.99 ⁰	~13	53
¹⁶ O(a,at) ¹³ C	25.81 ⁰ -43.99 ⁰	~2	55

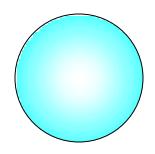
Finite Range Knockout

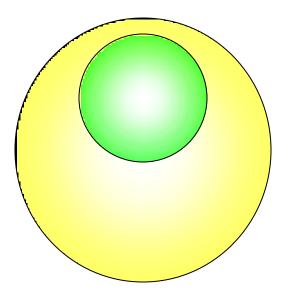


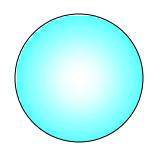


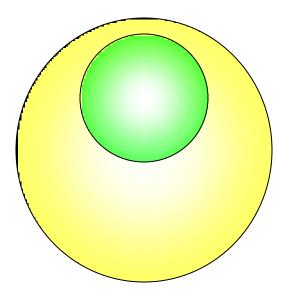


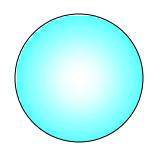


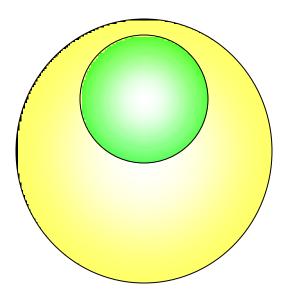


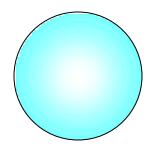


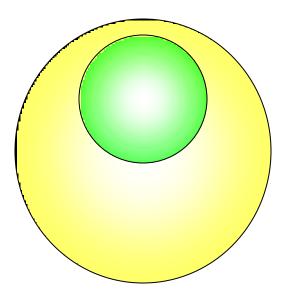


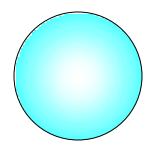


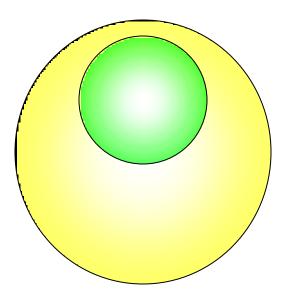


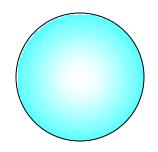


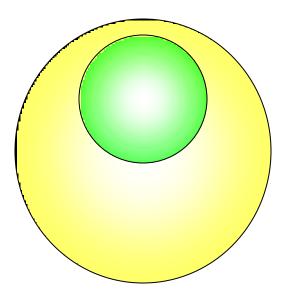


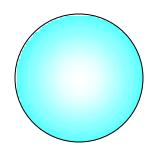


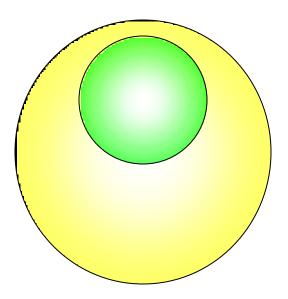


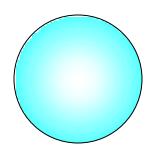


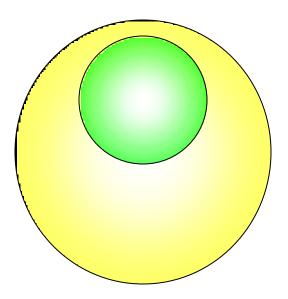


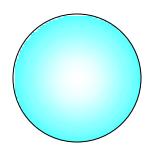


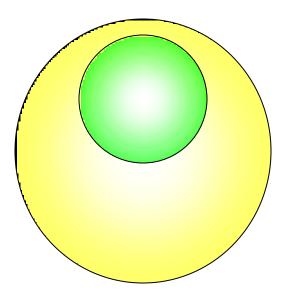


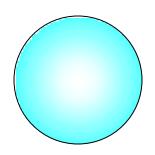


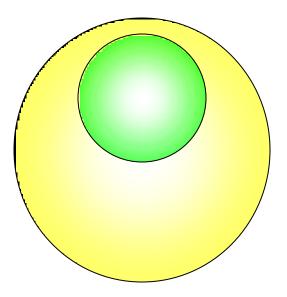


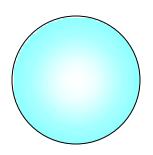


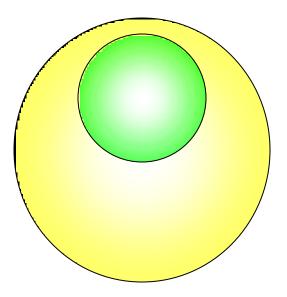


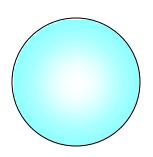


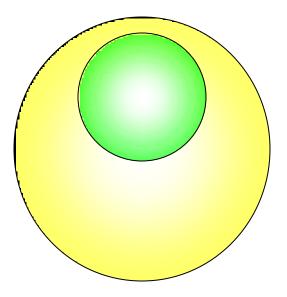


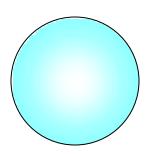


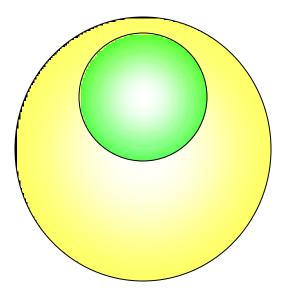


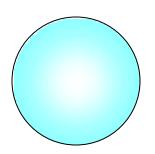


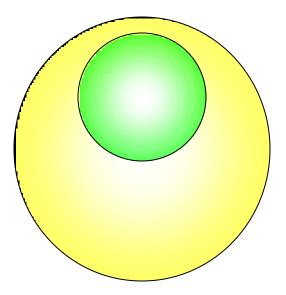


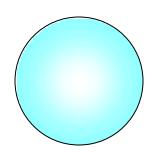


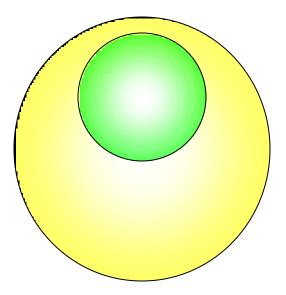




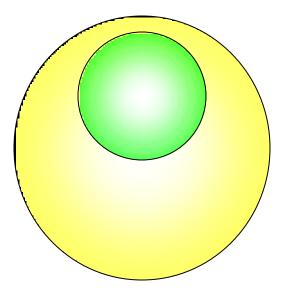




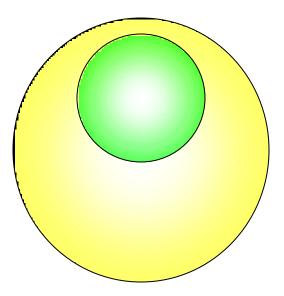


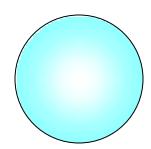


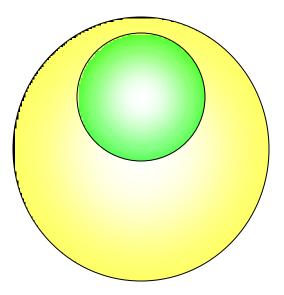


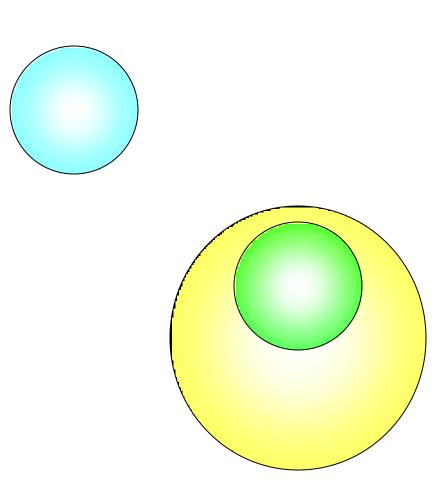


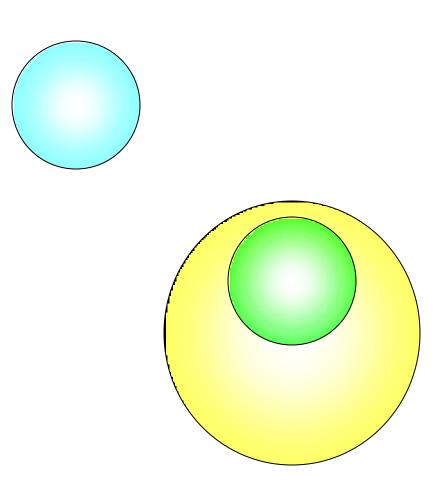


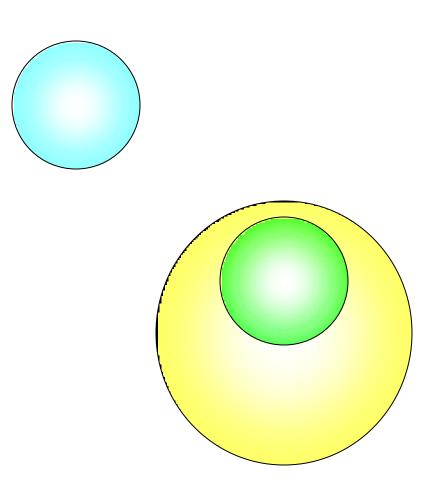


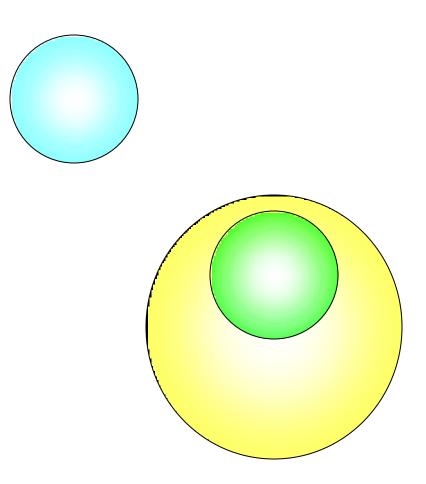


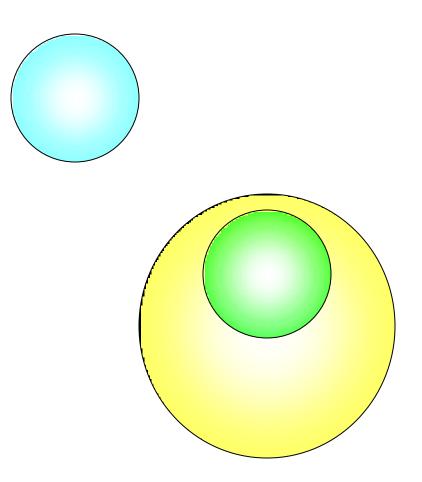


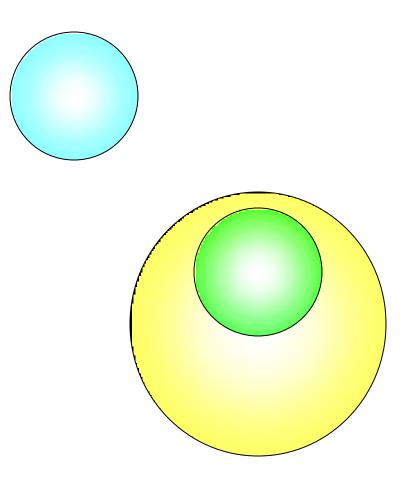


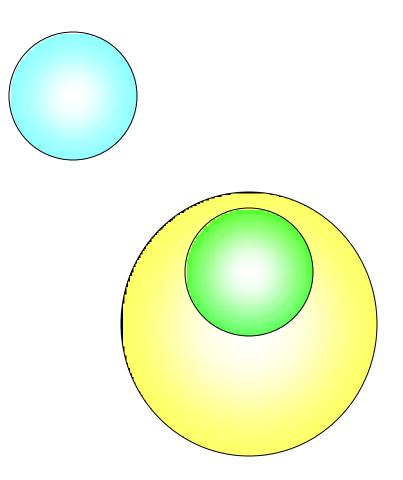


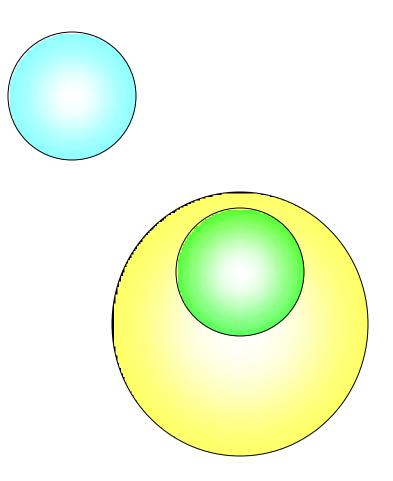


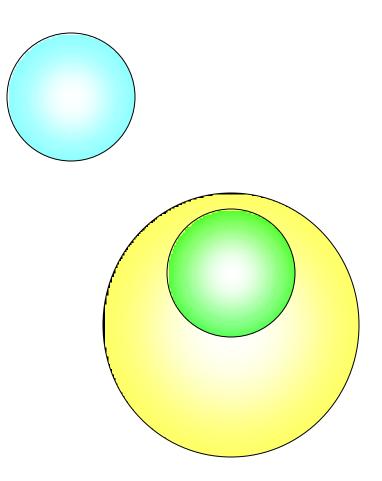


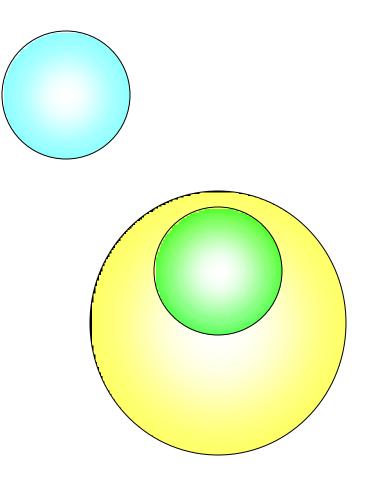


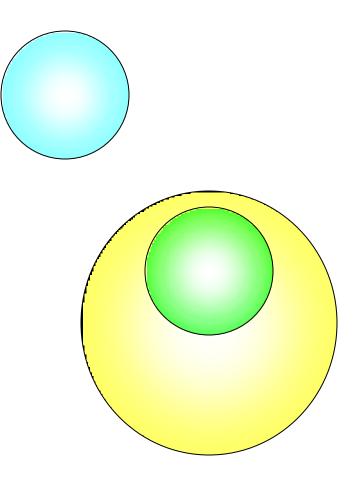


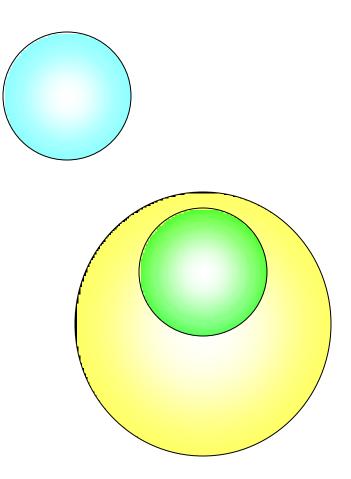


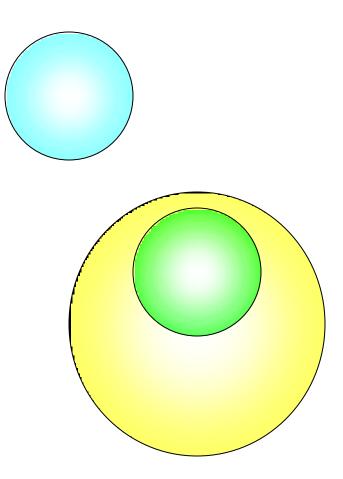


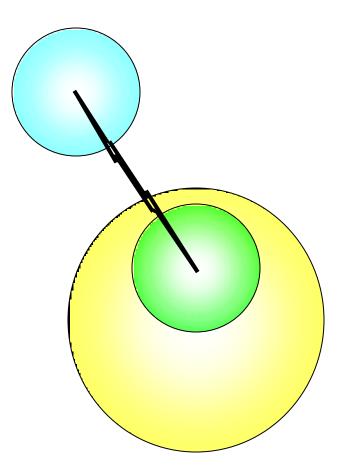


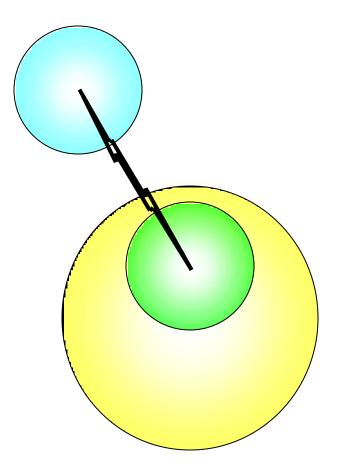


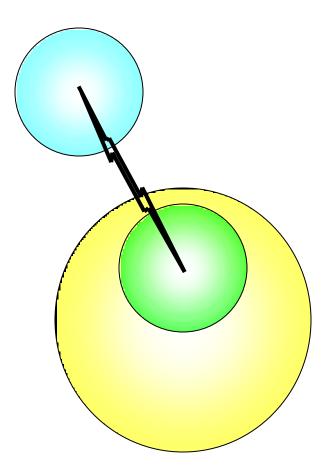


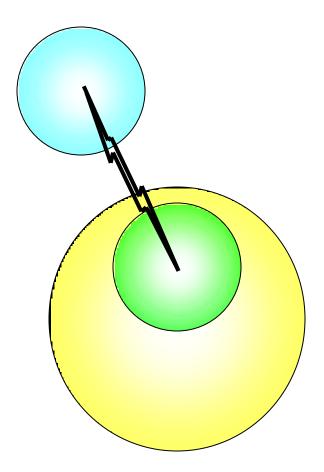


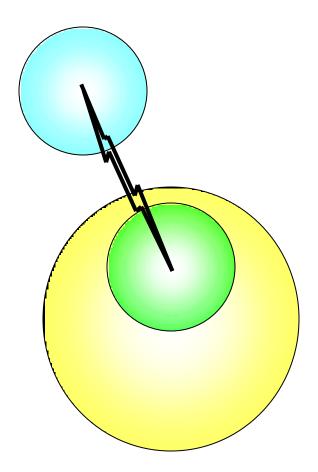


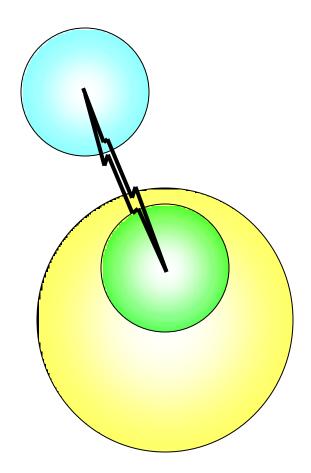


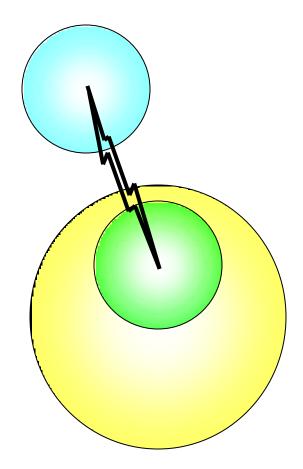


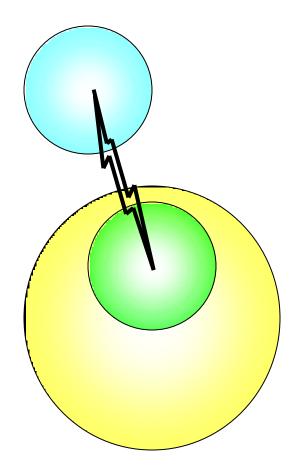


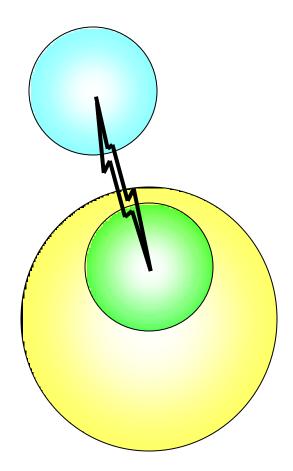


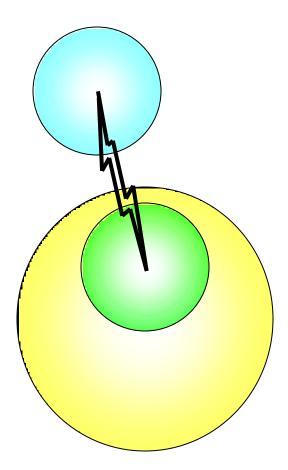


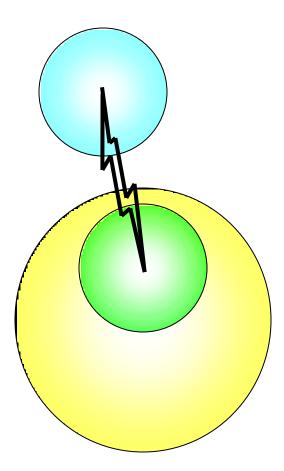


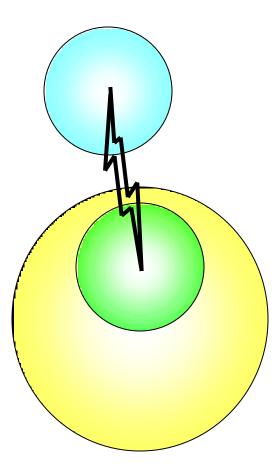


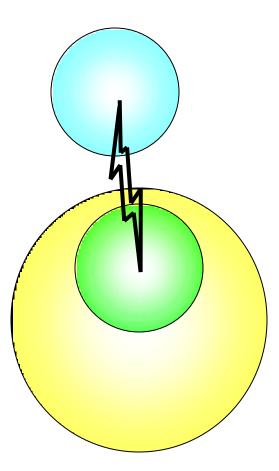


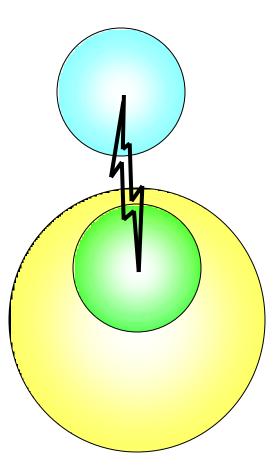


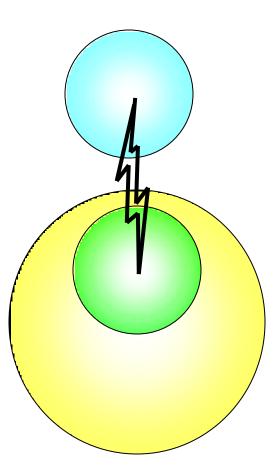


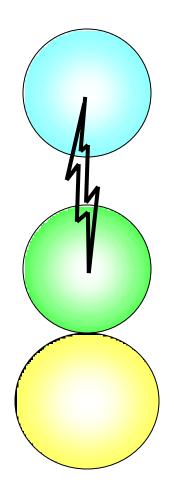


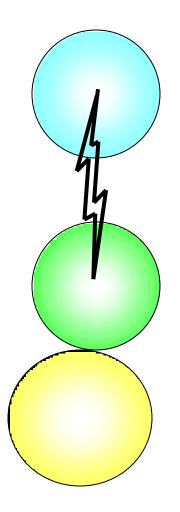


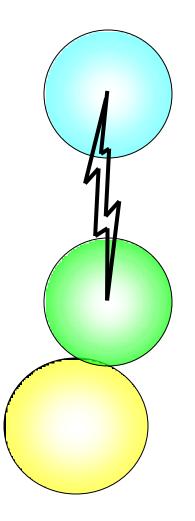


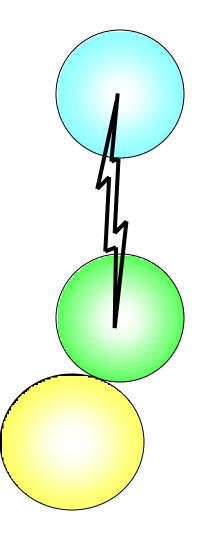


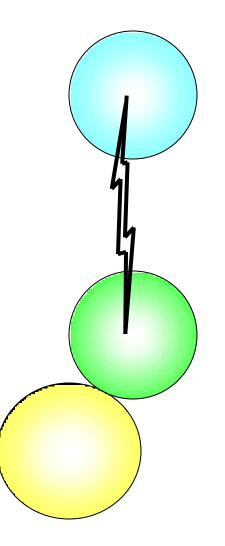


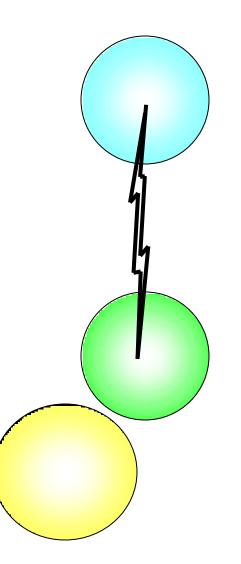


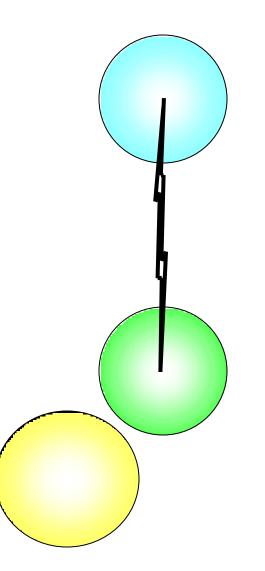


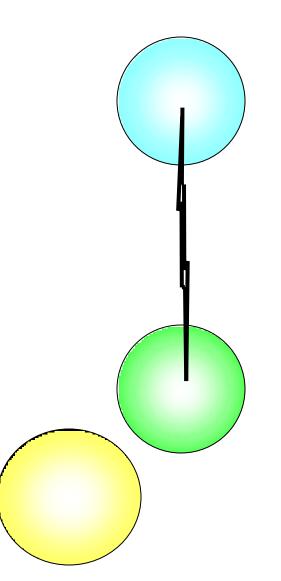


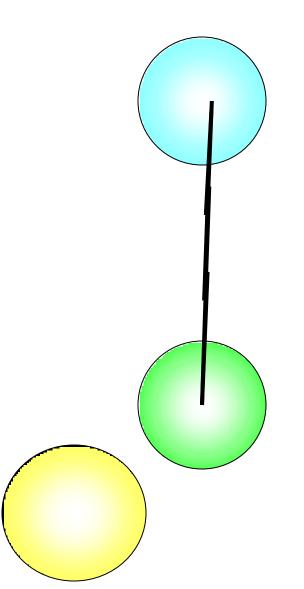


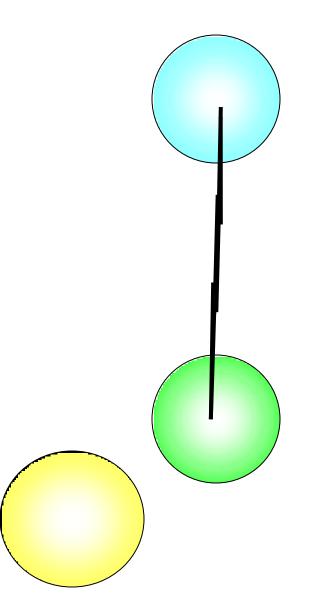




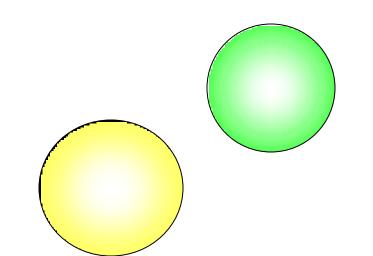


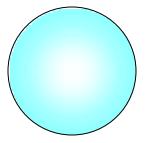


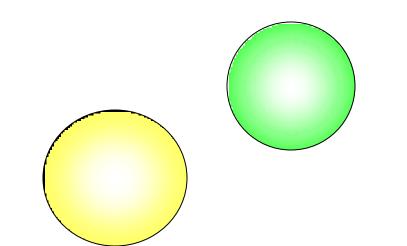


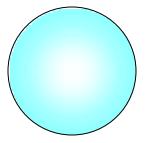


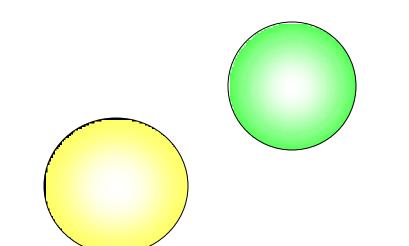


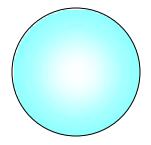


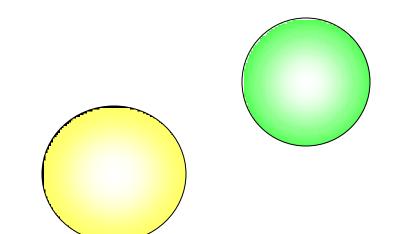


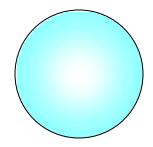


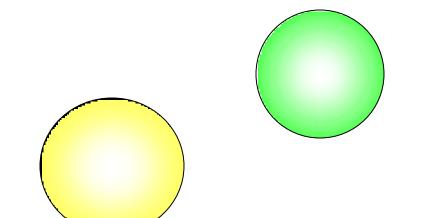


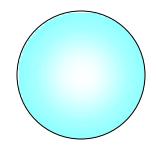


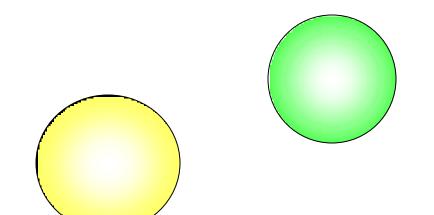


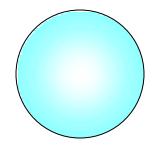


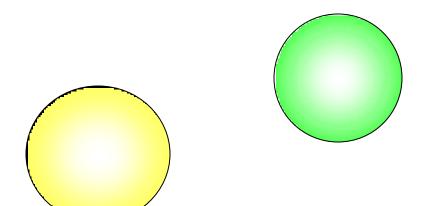


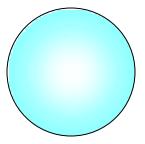


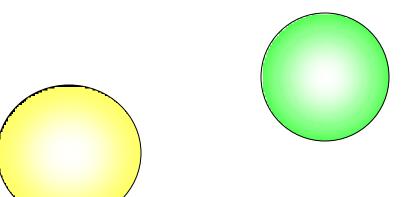


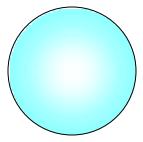


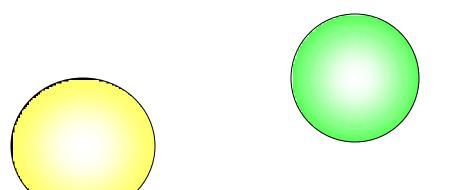


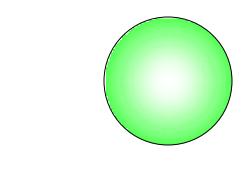


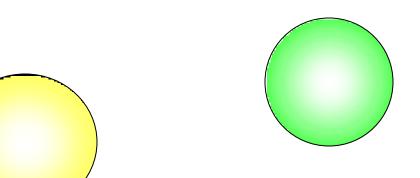


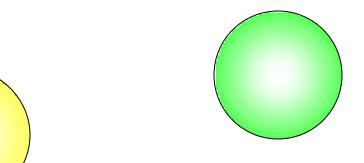


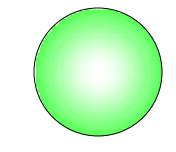


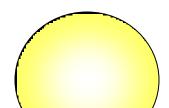


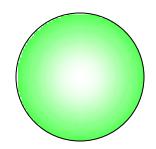


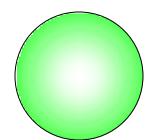












Zero Range Approximation for the knockout vertex is hidden in the conventional language of the factorization approximation of the knockout vertex matrix element.

Actually the transition matrix element and the double differential cross section are written as,

$$\frac{d^{3}\sigma^{L,J}}{d\Omega_{1}d\Omega_{2}dE_{1}} = F_{kin}.S_{\alpha}^{LJ}.\sum_{\Lambda} \left|T_{fi}^{\alpha L\Lambda}(\vec{k}_{f},\vec{k}_{i})\right|^{2}$$

$$T_{fi}^{\alpha L\Lambda}(\vec{k}_{f},\vec{k}_{i}) = \int g(r)dr$$

= $\int \chi_{1}^{(-)*}(\vec{k}_{aB},\vec{r}_{aB})\chi_{2}^{(-)*}(\vec{k}_{2B},\vec{R}_{2B})t_{12}(\vec{r}_{12})\chi_{0}^{(+)}(\vec{k}_{1A},\vec{r}_{1A})\varphi_{L\Lambda}(\vec{R}_{2B})d\vec{r}_{12}d\vec{R}_{2B}$

Which includes the finite range effects, which we have worked for the first time.

t- matrix effective Interaction

t-matrix:-

$t^{\pm} = V \Omega^{\pm}$

The Moller wave Ω^{\pm} operator is such that it transforms the plane wave states, Φ into scattering states, ψ^{\pm} is defined in terms of radial scattering solutions $u_l(kr)$ as:

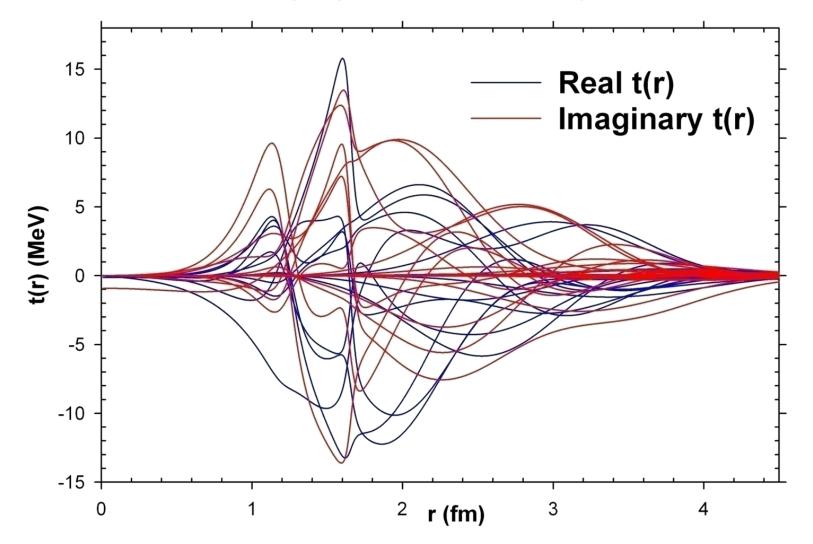
$$\psi_{\alpha\alpha}^{\pm}(\vec{r}) = \sum_{l=0,2,4} i^{l} (2l+1) \frac{u_{l}(kr)}{kr} e^{i\sigma_{l}} P_{l}(\hat{r})$$
$$t_{\alpha\alpha}^{+}(E,\vec{r}) = e^{-ikz} \sum_{l=0,2,4,...} V_{l}(r) i^{l} (2l+1) \frac{u_{l}(kr)}{kr} e^{i\sigma_{l}} P_{l}(\hat{r})$$

$$t_{L}(E,r) = \frac{2L+1}{2} \sum_{l,m} V_{l}(r) i^{l} (2L+1) \frac{\mu_{l}(kr)}{kr} j_{m}(kr) (-i)^{m} (2m+1) e^{i\sigma_{l}} \int_{-1}^{+1} P_{L}^{*}(\cos\theta) P_{l}(\cos\theta) P_{m}(\cos\theta) d(\cos\theta) d(\cos\theta)$$

Arun K Jain & Bhushan N. Joshi, Prog. Theor. Phys. 120 (2008) 1193

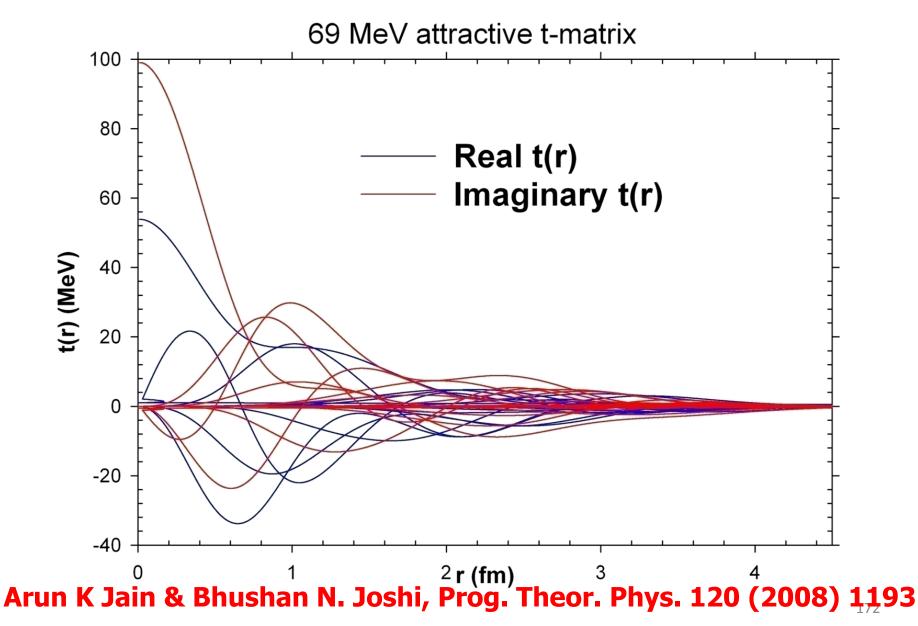
Repulsive core + Attractive α - α t-matrix, t ψ =V Φ

69 MeV (Repulsive+Attractive) t-matrix

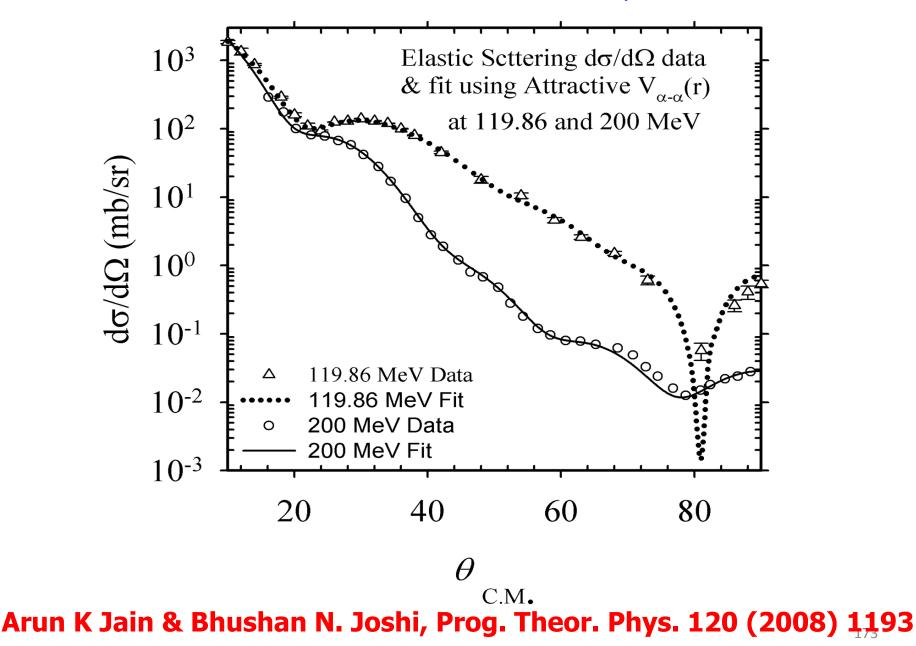


Arun K Jain & Bhushan N. Joshi, Prog. Theor. Phys. 120 (2008) 1193

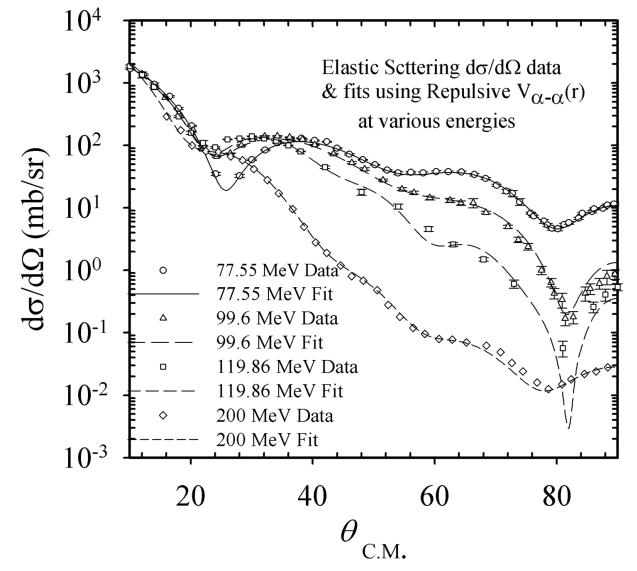
Attractive α - α t-matrix, t ψ =V Φ



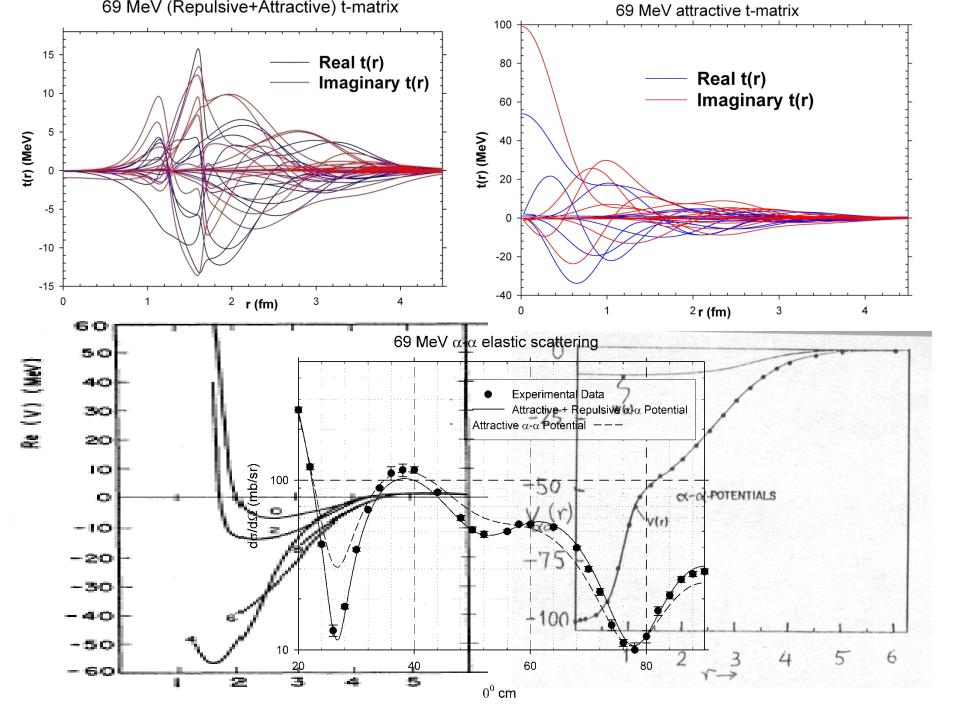
$d\sigma/d\Omega$ from Attractive α - α potential



 $d\sigma/d\Omega$ from Attractive + Repulsive Core α - α Potential



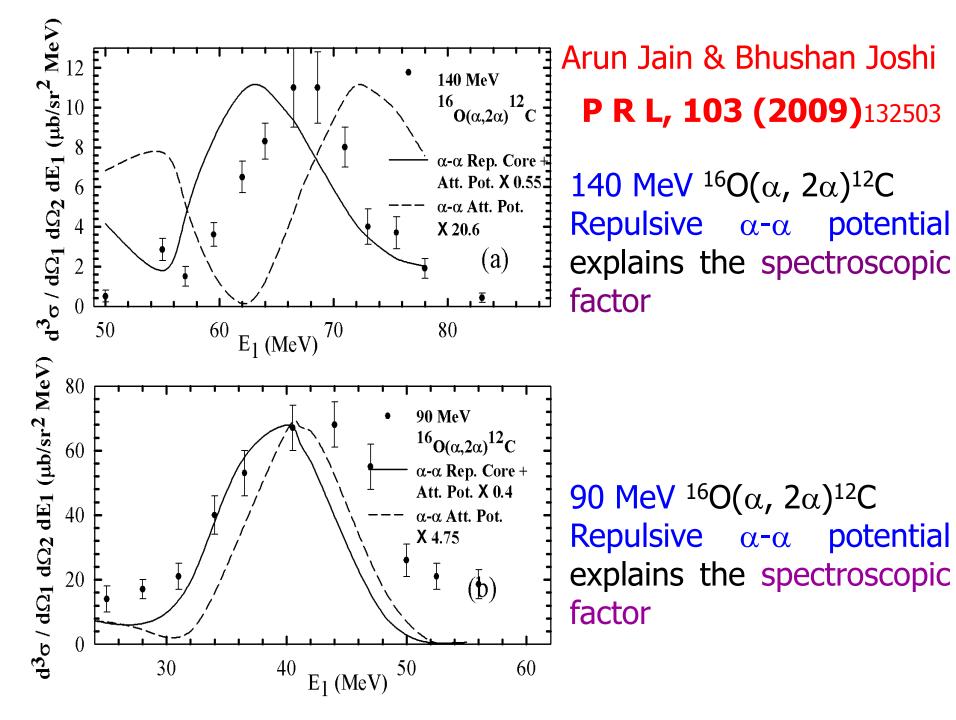
Arun K Jain & Bhushan N. Joshi, Prog. Theor. Phys. 120 (2008) 1193

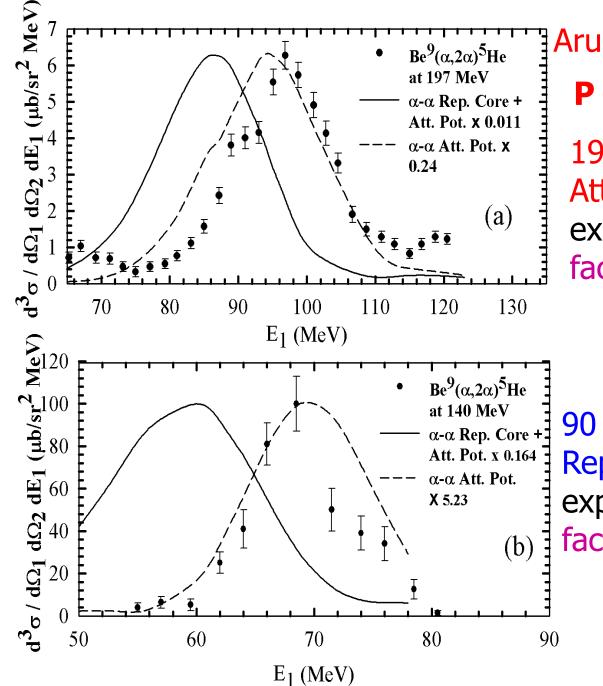


	FR DWIA A2A CODE
$\chi_0 \longrightarrow \ell$	(r, θ, φ, R, Θ, Φ)
60	90, 64, 64, 22, 22, 22
$\chi_1 \longrightarrow \ell m$	$(r, \theta, \phi, R, \Theta, \Phi)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90, 64, 64, 22, 22, 22 (<i>R</i> , Θ, Φ) 22, 22, 22 (<i>R</i> , Θ, Φ) 22, 22, 22 (<i>r</i> , θ, φ) 90, 64, 64

64*64*90*22*22*22= **3.9*10⁹** Multiplications 60*60*121*60*121*60*60*121= **1.38*10¹⁵** Sums

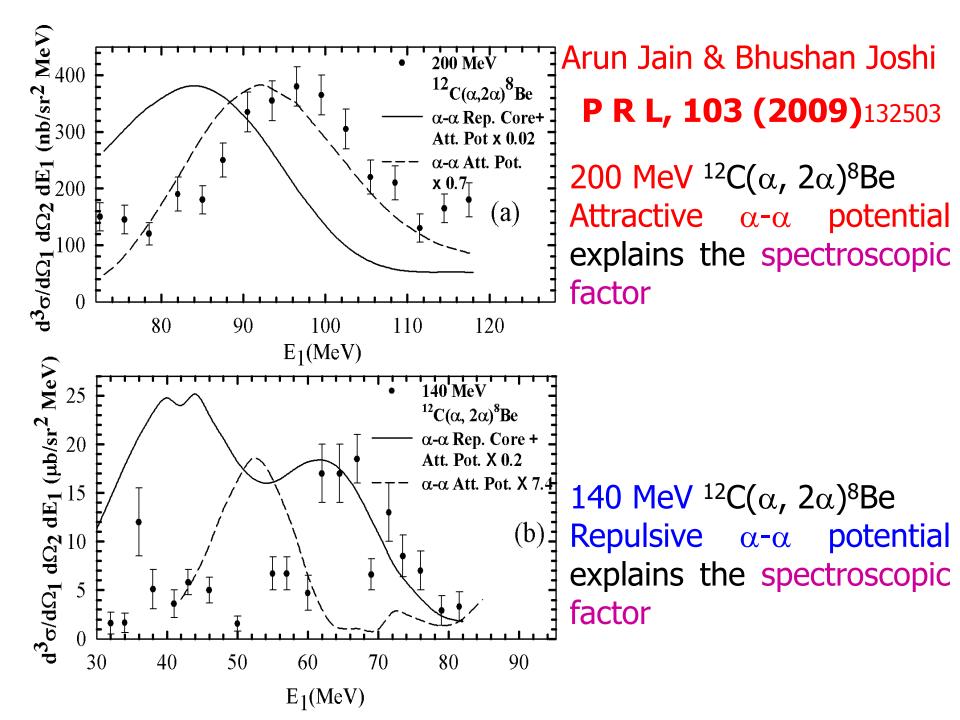
$(\alpha, 2\alpha)$ results





Arun Jain & Bhushan Joshi **P R L, 103 (2009)**132503 197 MeV 9 Be(α , 2 α) 5 He Attractive α - α potential explains the spectroscopic factor

90 MeV ⁹Be(α , 2α)⁵He Repulsive α - α potential explains the spectroscopic factor



Comparison of (a, 2a) Spectroscopic factors from FR-DWIA calculations on ⁹Be, ¹²C, ¹⁶O nuclei at various energies

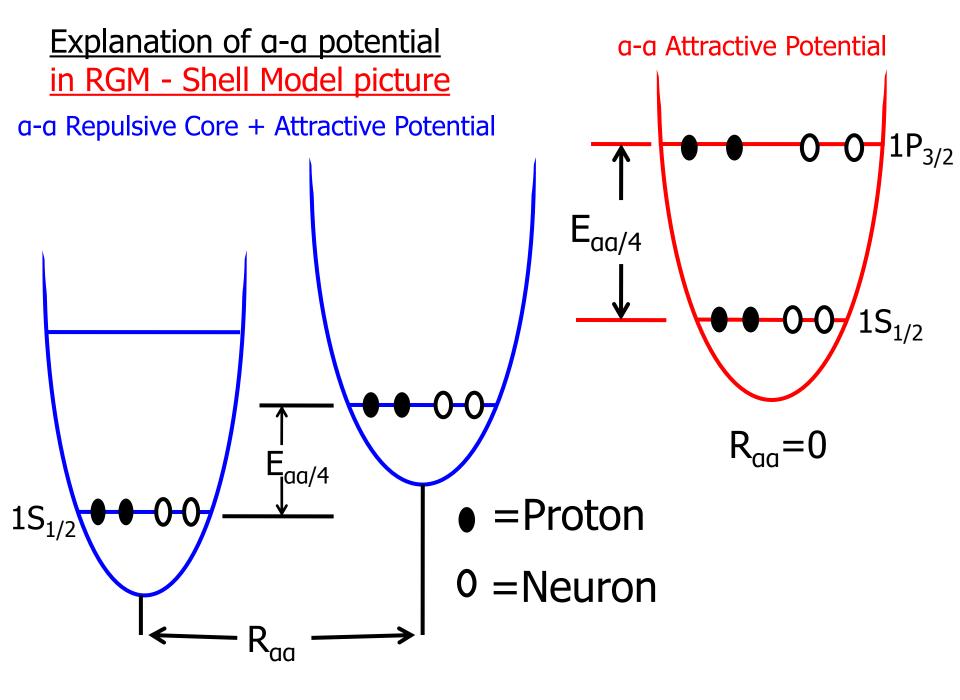
Reaction	Εα	Sa					
	(<i>MeV</i>)	(R+A)	(A)	Theory			
⁹ Be(a,2a)⁵He	197	0.011	0.24	0.57			
	140	0.164	5.23				
¹² C(a,2a) ⁸ Be	200	0.02	0.7	0.55, 0.29			
	140	0.2	7.4				
¹⁶ O(a,2a) ¹² C	140	0.55	20.6	0.23, 0.3			
	90	0.4	4.75				

Arun Jain & Bhushan Joshi, P R L, 103 (2009) 132503

Understanding:-

- In the shell model picture the two α 's can not physically overlap unless their nucleonic wave functions satisfy Pauli Principle.
- Which means that their shell model single particle orbitals are to be occupied by the second set of 2-neutrons and 2-protons with their single particle 1s -1p energy gap. Which can be seen in the excitation of α -particle at ~20 MeV.
- 4-particles of the other alpha to be promoted to this level require an excitation of ~80 MeV.
- In the α α lab system it will be ~160 MeV.
- Thus the two α 's repel each other below this lab energy.

* Thus we have achieved an explanation of most of the puzzling features of the Direct Nuclear Reactions.

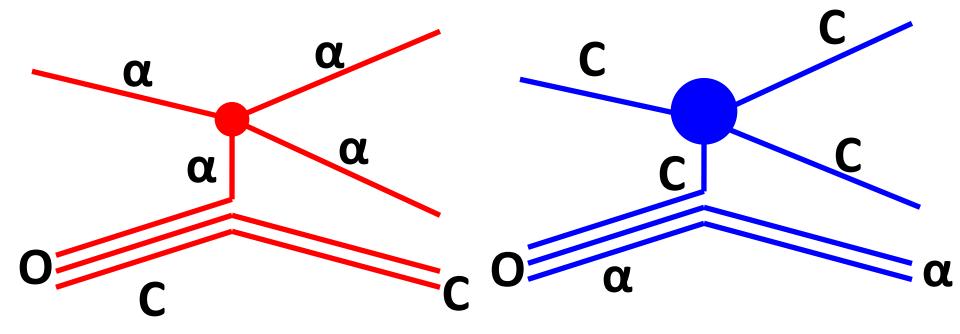


Heavy Cluster Knockout

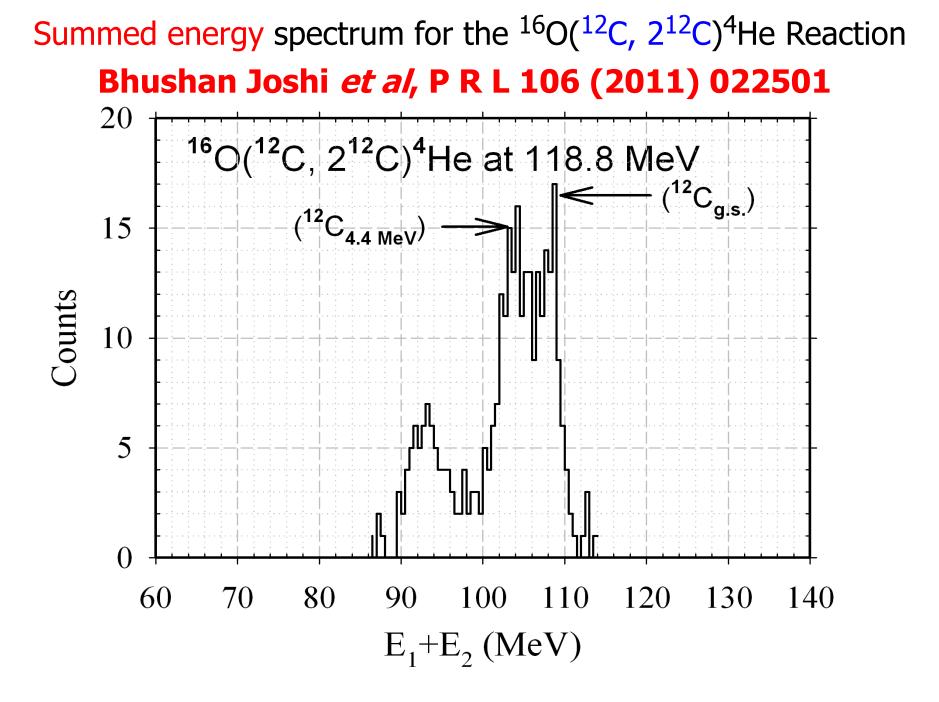
(α, 2α)

(C, 2C)

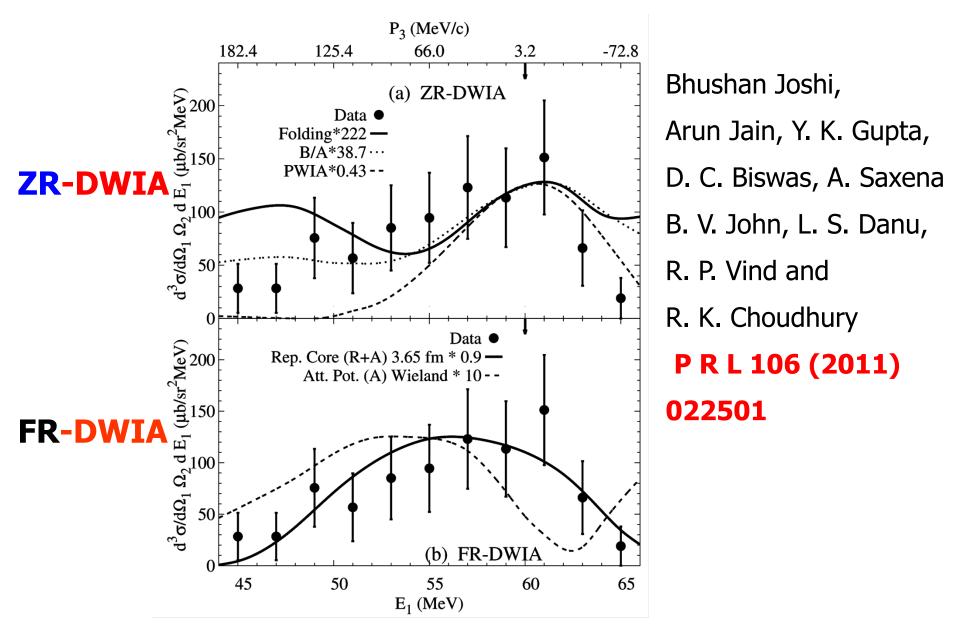
Comparison of ${}^{16}O(\alpha,2\alpha) {}^{12}C$ and ${}^{16}O({}^{12}C, 2{}^{12}C) {}^{4}He$



¹⁶O(C,2C) α was performed at Mumbai LINAC-Pelletron at E_C=119 MeV



Comparison of Theory and Experiment: energy sharing distribution for 119 MeV ¹⁶O(C, 2C)⁴He Reaction:-



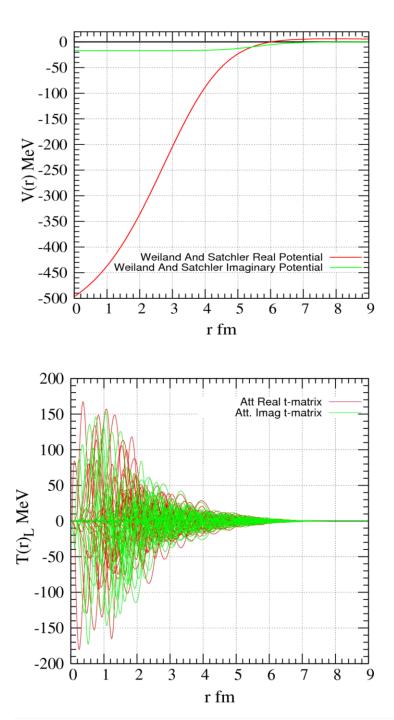
Comparison of the (α , 2α) and (C, 2C) reactions on ¹⁶O

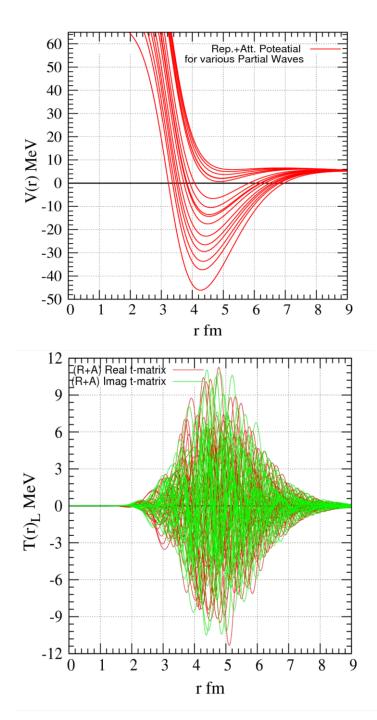
Proje- ctile Energy	Reaction	ExptI. X- Section μb/sr ² MeV	ZR-DWIA X- Section μb/sr ² MeV	S _α ZR- DWIA	FR-DWIA X-Section µb/sr ² MeV		S _α FR-DWIA		Theory
(MeV)					Α	R+A	Α	R+A	
140	¹⁶ Ο(α,2α) ¹² C	10.5	0.96	11	0.51	19.1	20.6	0.55	0.23
119	¹⁶ Ο(C,2C)α	125±50	0.56	222	12.5	138	10	0.9	0.23

Comparison of S_{α} (ZR-DWIA) indicates an enhancement of

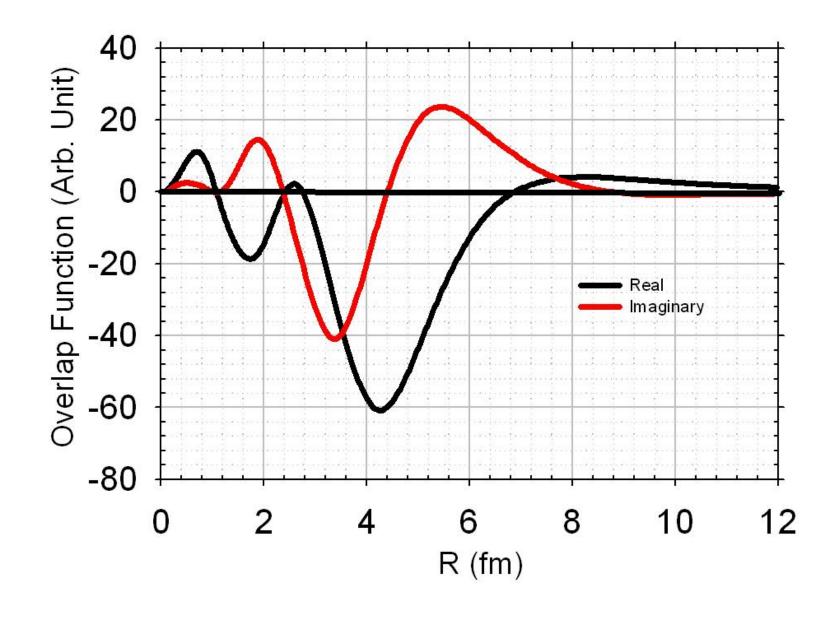
20 times more in (C, 2C) case as compared to $(\alpha, 2\alpha)$ case

A comparison of S_{α} (ZR-DWIA) with theory indicates an enhancement of 965 times in the (C, 2C) case

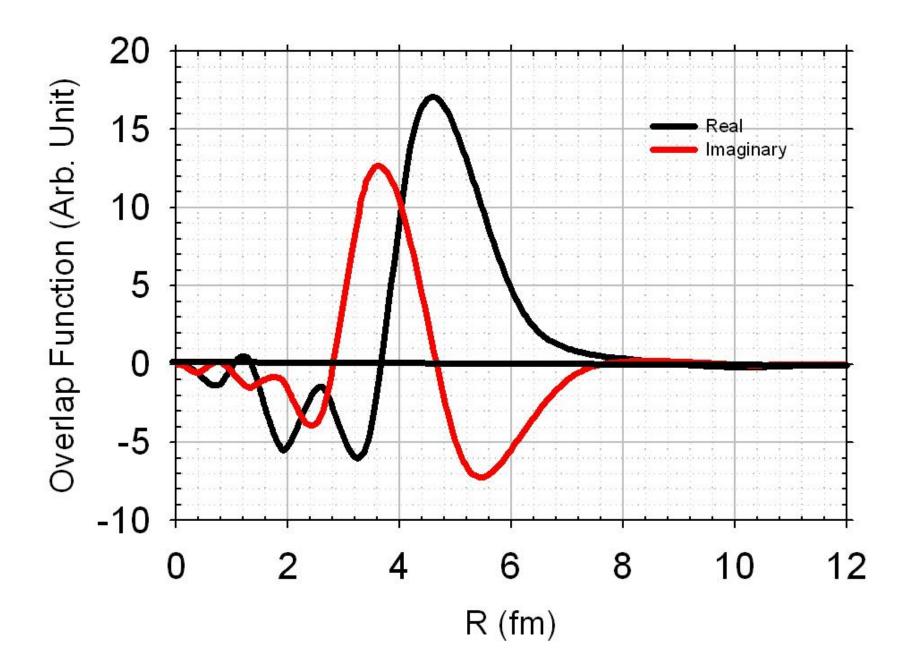




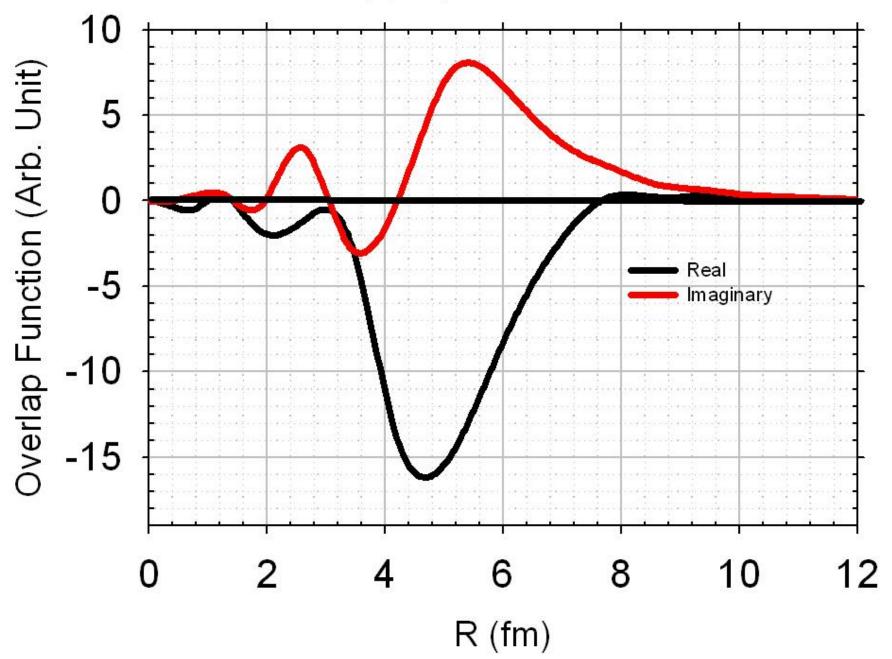
⁹Be(α , 2 α)⁵He at 140 MeV



¹⁶O(α , 2 α)¹²C at 140 MeV

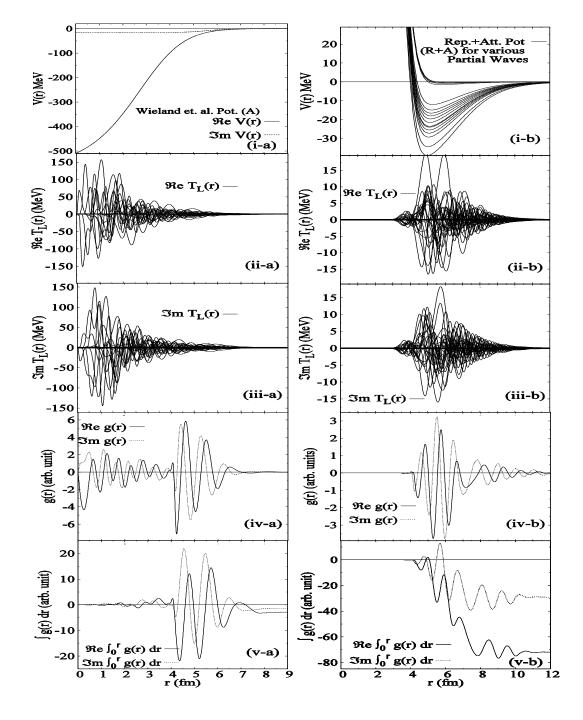


¹⁶0(C, 2C)⁴He at 118 MeV

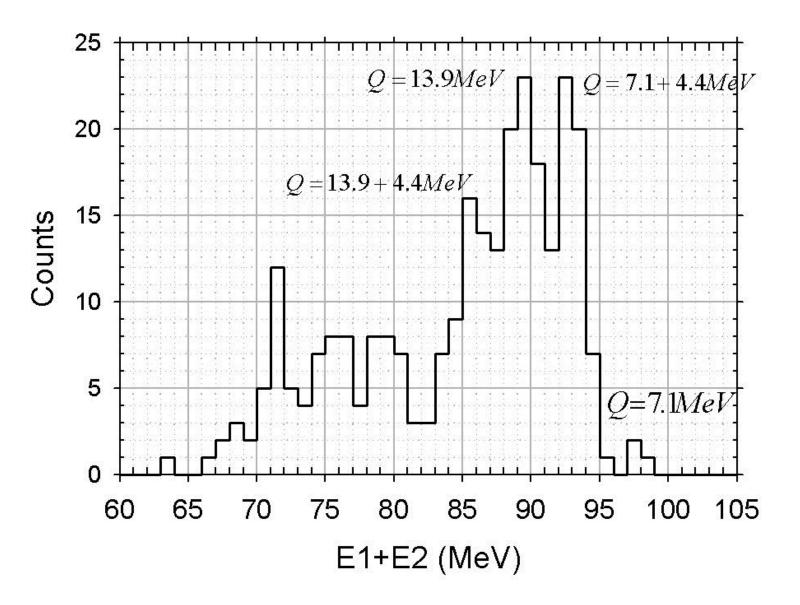


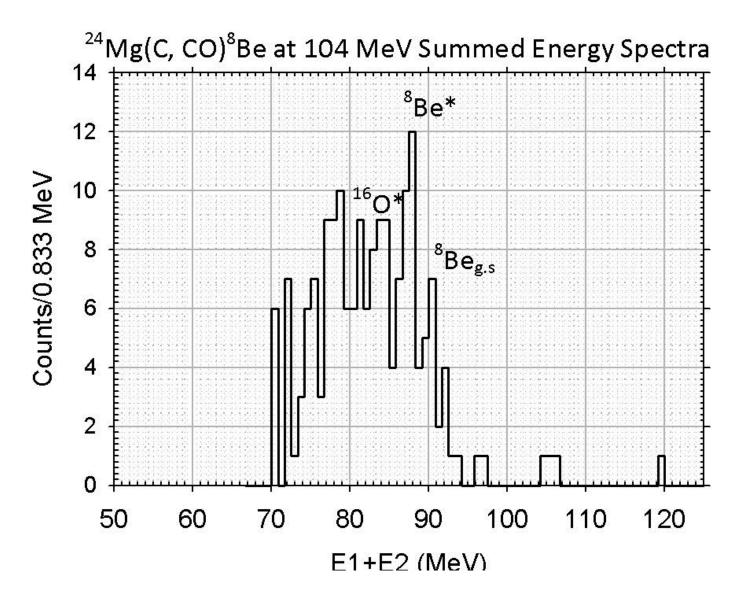
$$T_{fi}^{\alpha L\Lambda}(\vec{k}_{f},\vec{k}_{i}) = \int g(r)dr$$

= $\int \chi_{1}^{(-)*}(\vec{k}_{aB},\vec{r}_{aB})\chi_{2}^{(-)*}(\vec{k}_{2B},\vec{R}_{2B})t_{12}(\vec{r}_{12})\chi_{0}^{(+)}(\vec{k}_{1A},\vec{r}_{1A})\varphi_{L\Lambda}(\vec{R}_{2B})d\vec{r}_{12}d\vec{R}_{2B}$

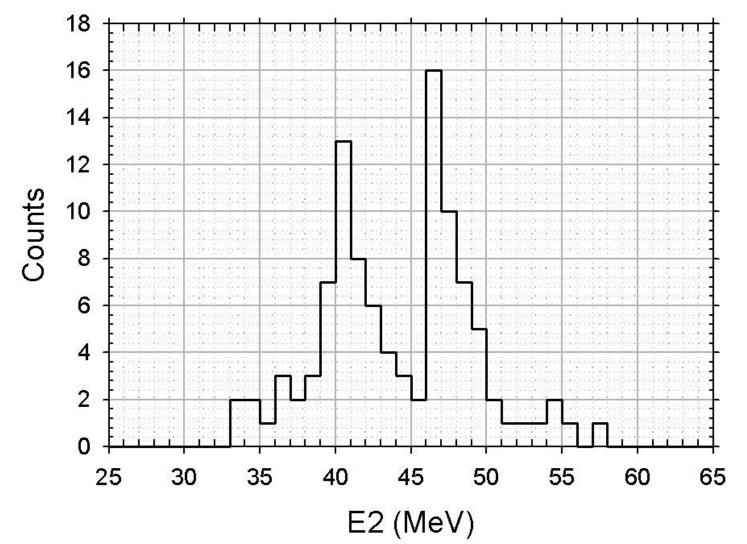


Summed Energy Spectrum of ${}^{24}Mg({}^{12}C, 2{}^{12}C){}^{12}C$ at 104 MeV. Q=13.9 MeV at coplanar symmetric angle of 40.5⁰

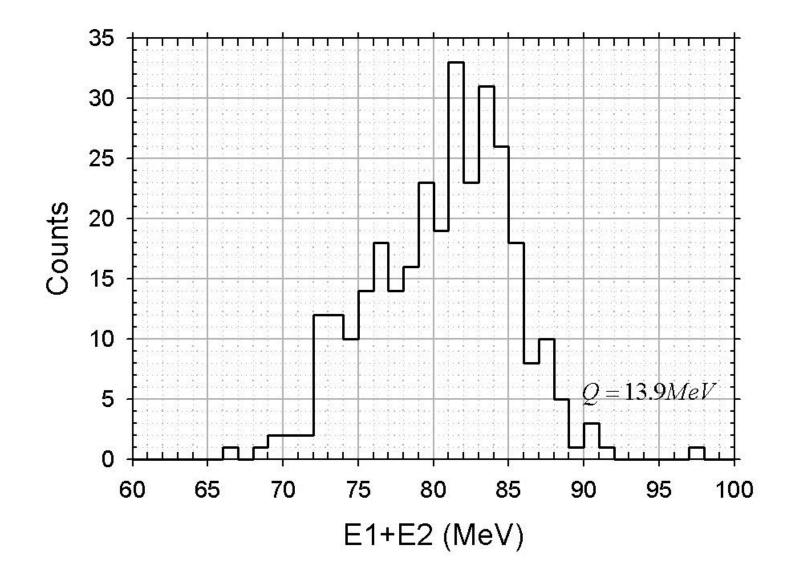




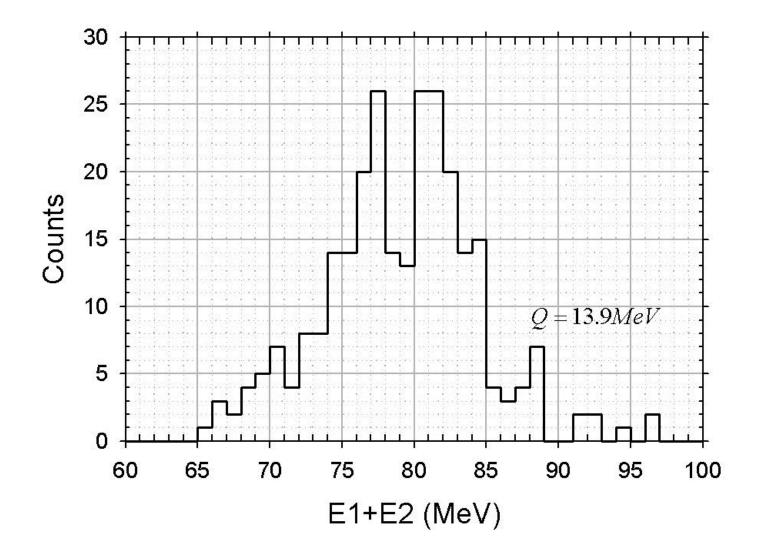
Energy sharing spectra of ${}^{24}Mg({}^{12}C, 2{}^{12}C){}^{12}C$ at 104 MeV with Q=13.9 MeV at coplanar symmetric angle of 40.5⁰



Summed Energy Spectrum of ${}^{24}Mg({}^{12}C, 2{}^{12}C){}^{12}C$ at 104 MeV. Q=13.9 MeV at coplanar symmetric angle of 36.7^o

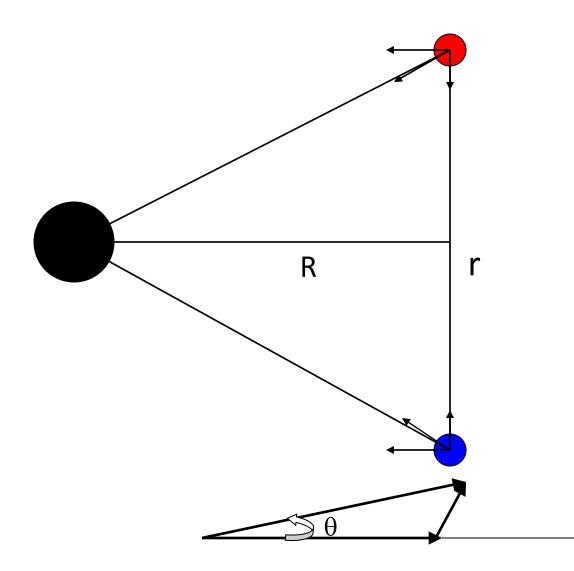


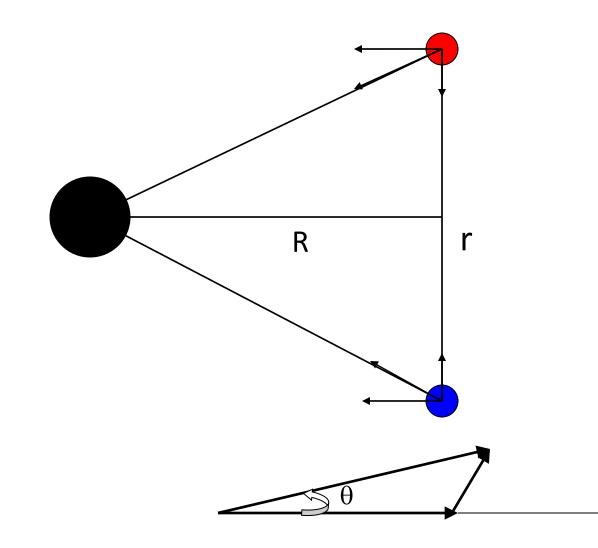
Summed Energy Spectrum of ${}^{24}Mg({}^{12}C, 2{}^{12}C){}^{12}C$ at 104 MeV. Q=13.9 MeV at coplanar symmetric angle of 33.9⁰

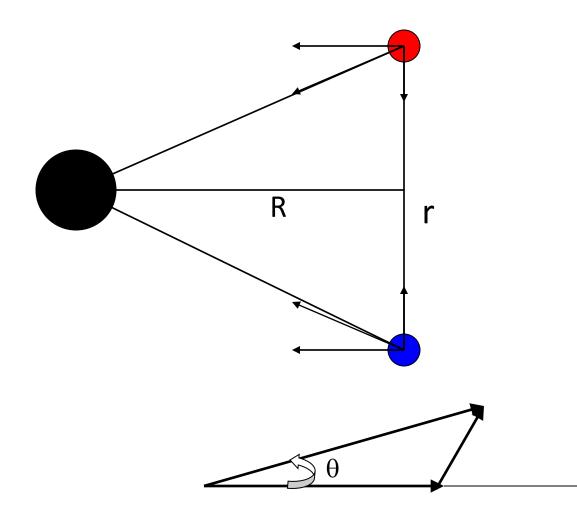


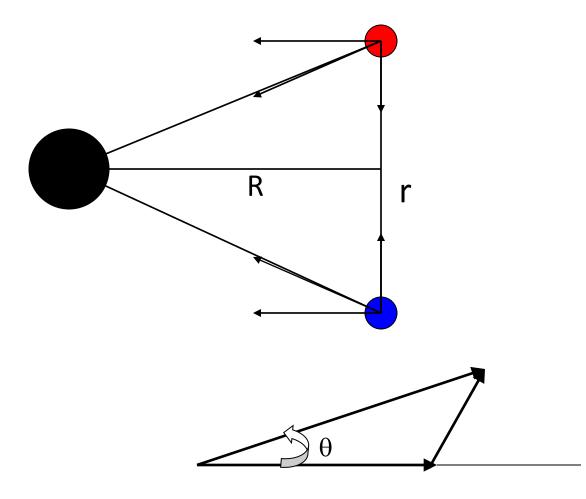
- Finite Range with distortions explain elastic as well as knockout data.
- One can do heavy cluster knockout similar to (C,2C) reaction to study the short distance behaviour of the heavy clusters vertex (Repulsive core radius).
- The repulsion arises from the antisymmetrization of the many fermions system.
- Distortions due to the residual nucleus can be used as an observer (not just a spectator) of the knockout vertex.
- Knockout reactions are very sensitive to the interaction at the knockout vertex. Which has never been imagined by earlier workers.
- Heavy cluster knockout is possible to analyze because of our Finite Range Formalism and program.

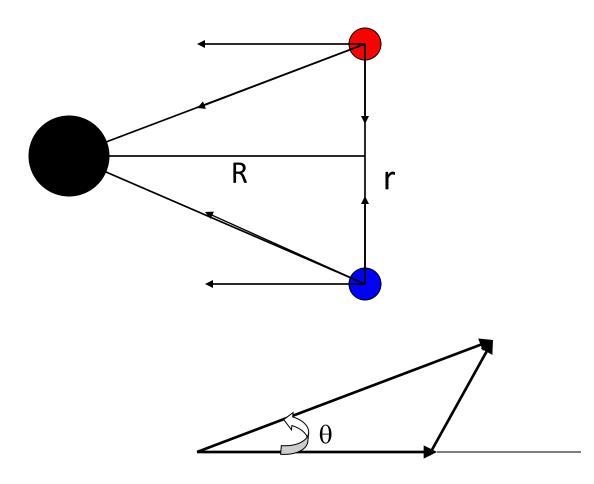
Shrinkage of Deuteron in ⁶Li

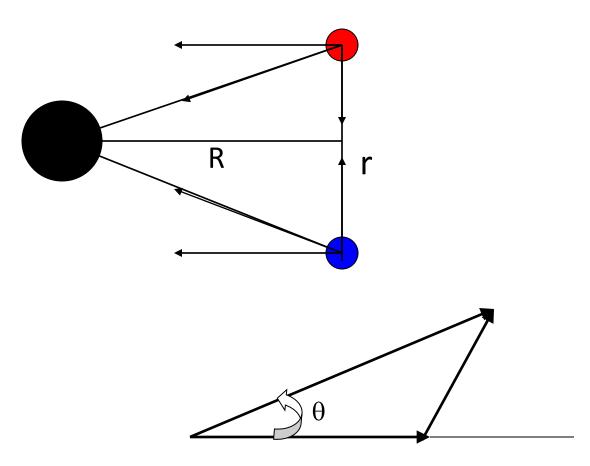


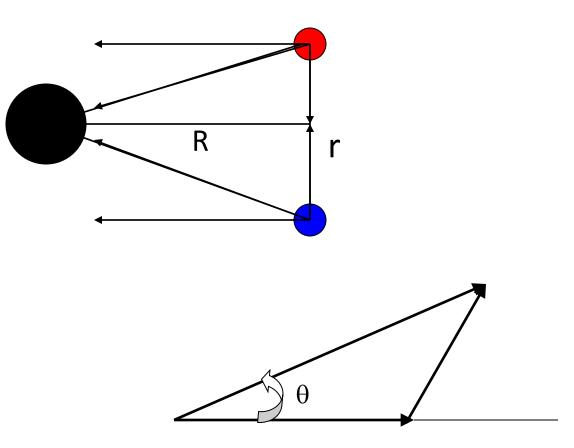


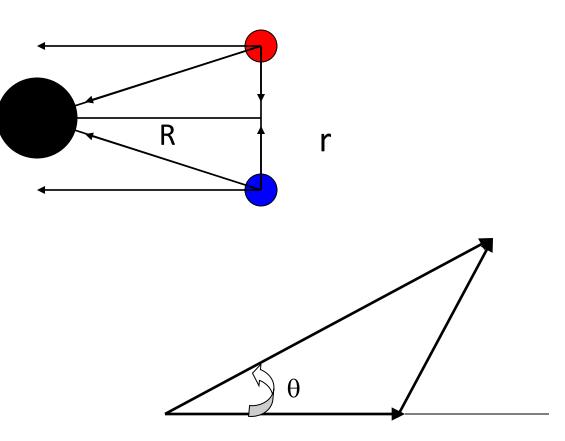


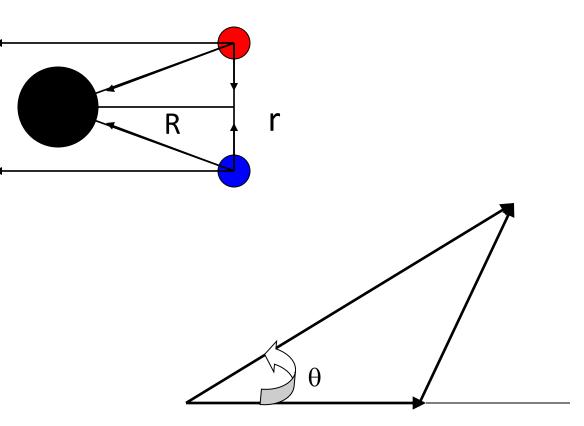


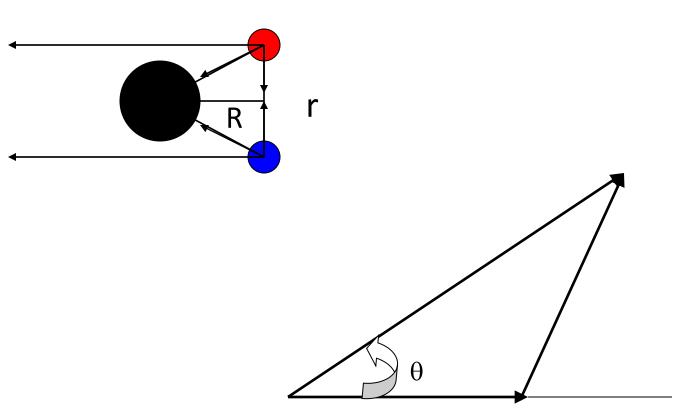


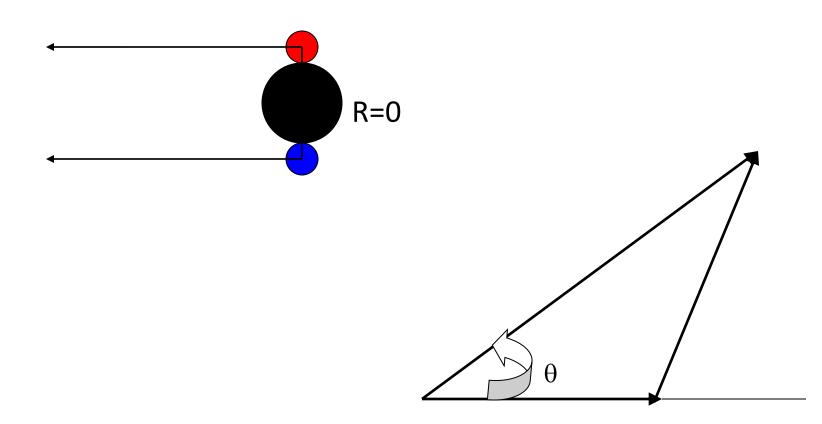


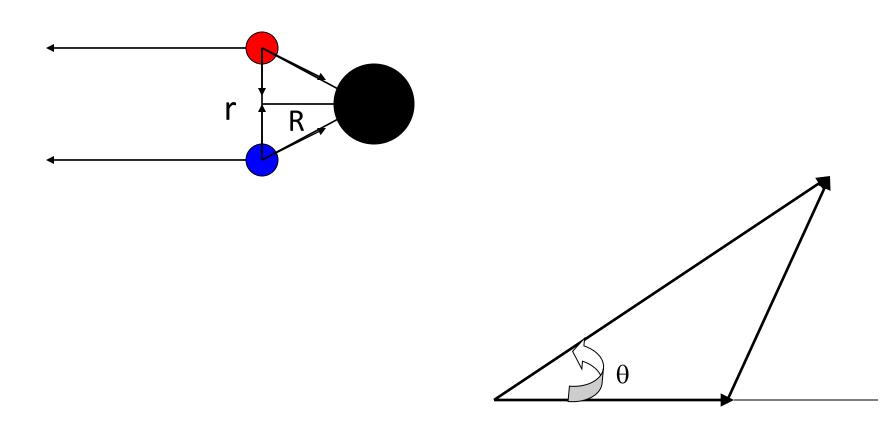


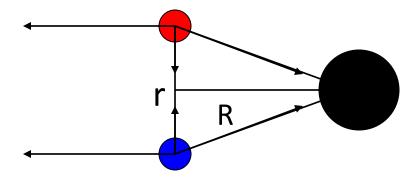


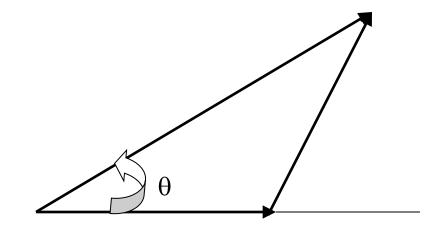




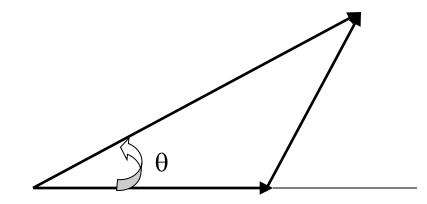


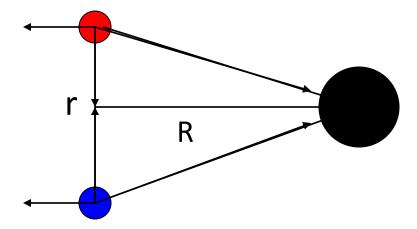


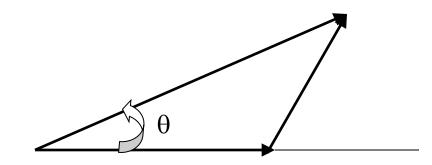


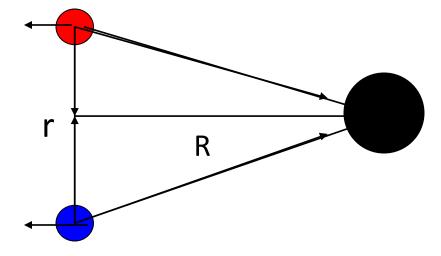


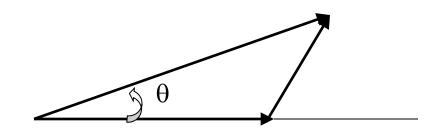


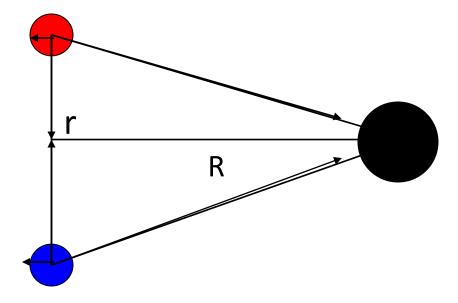


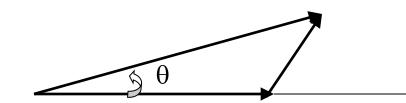


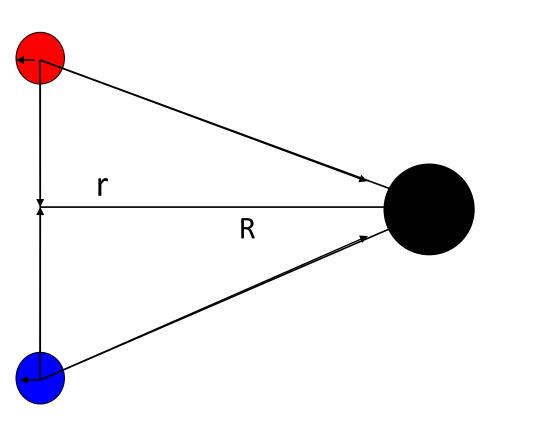


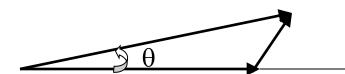


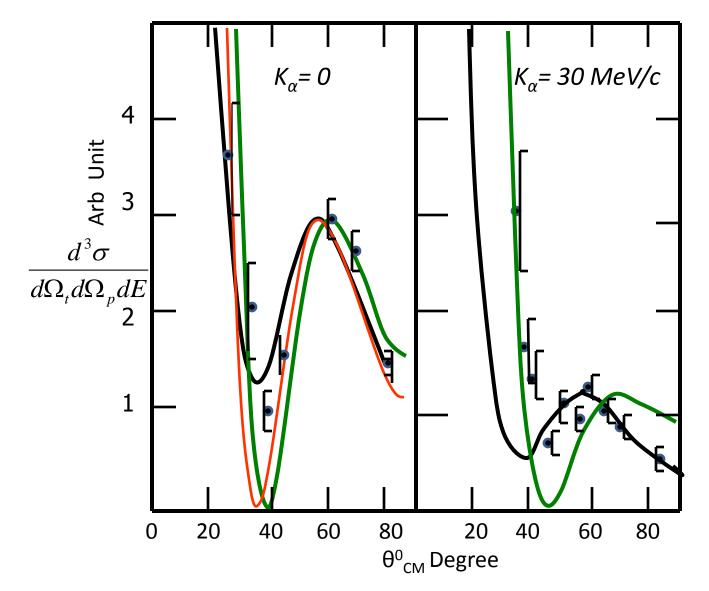






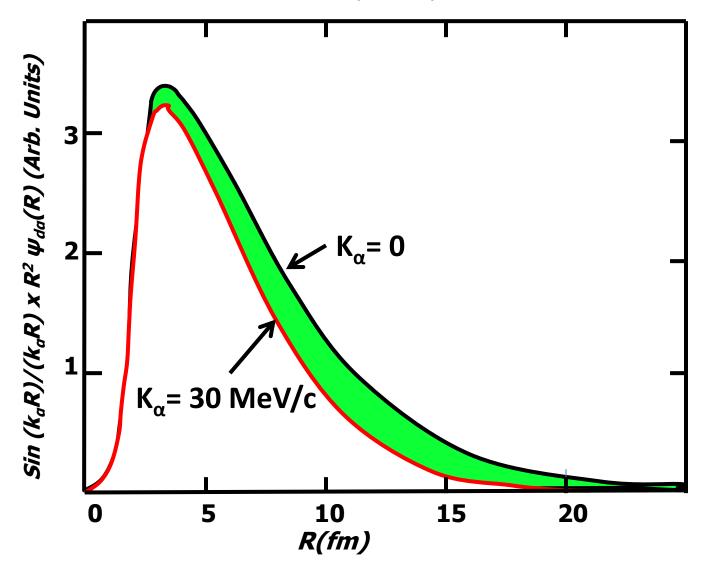






Shift of the Angular distribution of $Li^{6}(d, tp)He^{4}$ reaction to larger angles for k $_{a}$ = 30 MeV/c exhibiting shrinkage of d - cluster in ⁶Li as it approaches a - cluster

Plane wave overlap function for Li⁶(d, tp)He⁴ Reaction ~28 MeV PRL. **32** (1974) 173

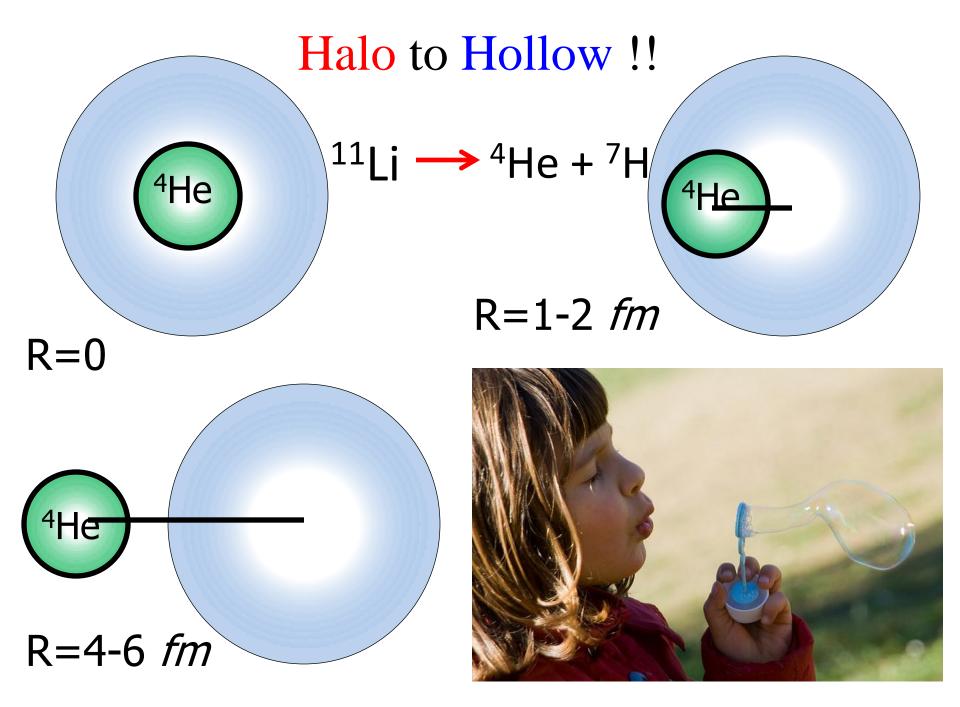


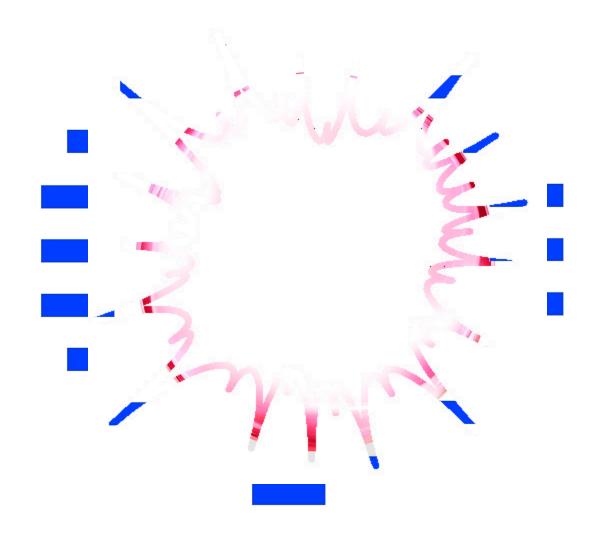
>As seen in the previous figure, when the Deuteron cluster goes farther away from the α cluster (when K α = 0 MeV/c) the transition amplitude has relatively more contribution from larger R_{d- α}.

>Otherwise, corresponding to K_{α} = -30MeV/c the ⁶Li(d, t p)⁴He is expected to display more contribution from the distorted deuteron and if the *n-p* residual interaction in Deuteron cluster is long range type then we will see shrinkage.

>It is clear from next slide; as compared to the free d(d, t)p distribution (free Deuteron cluster), the c.m. *t-p* angular distribution of the ⁶Li(d, t p)⁴He reaction shifts outwards. Which means that the relative momentum between *the* n - p of the deuteron cluster in ⁶Li increased.

from Halo to Hollow!!!

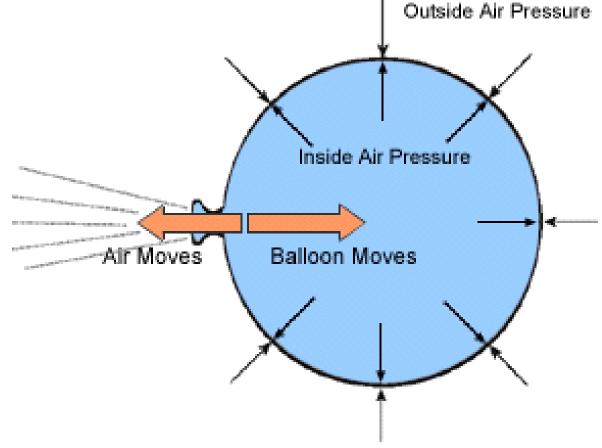




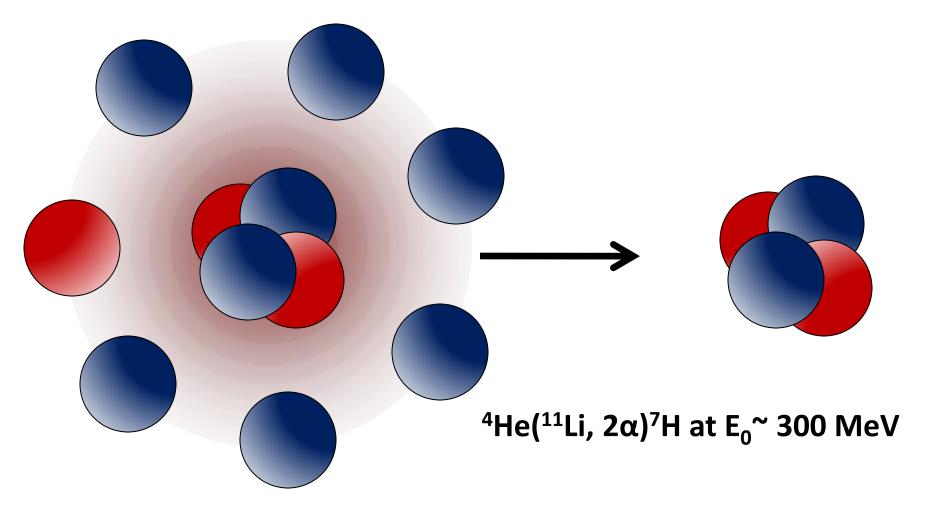
Otherwise

Deflation of a balloon when the surface tension is larger that the pressure inside the balloon.

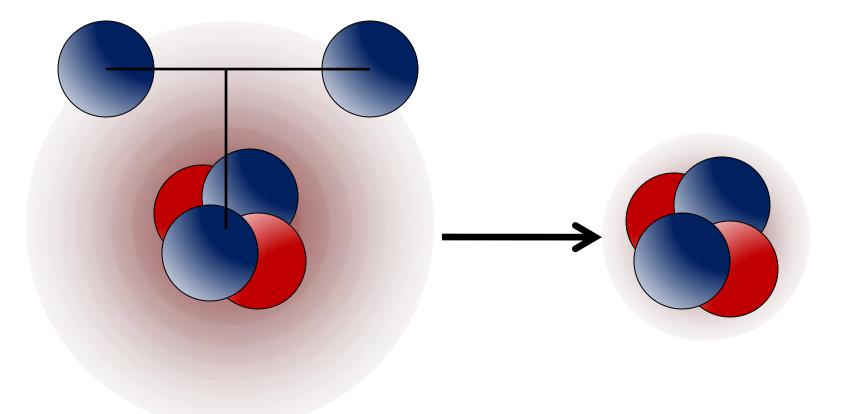
It nicely represent the decay of a cluster to a compact shape when the long range *N-N* residual interaction is strong.



Core Knockout Reaction of a Halo Nuclues:-

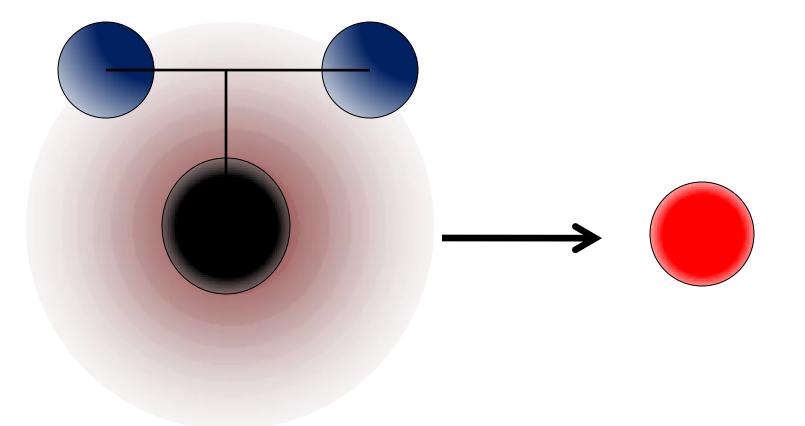


<u>Core Knockout Reaction of a Halo Nuclues</u> :-



⁴He(⁶He, 2⁴He)2n

<u>Core Knockout Reaction of a Halo Nuclues</u> :-



⁹Be(¹¹Li, ⁹Li ⁹Be)2n

Conclusions:-

- 1. In case of $(\alpha, 2\alpha)$ knockout reactions there is a transition from 160 MeV to 200 MeV, where the α - α interaction changes from repulsive to attractive potential.
- 2 One can by explain the sudden change in reaction cross sections considering the strong interaction vertex.
- 3 One can do heavy cluster knockout similar to (C,2C) reaction to study the short distance behaviour of the heavy clusters vertex (Repulsive core radius).
- 4 Preliminary data analysis and understanding of the ²⁴Mg(¹²C, 2¹²C)¹²C Reactions at 104 MeV suggest that ²⁴Mg(g.s) can not be described in terms of two Carbon-12 (g.s) clusters.
- 5 Data also indicated that ¹⁶O knockout from ²⁴Mg is very significant leading to ²⁴Mg as ¹⁶O+⁸Be
- 6 This also can be used to study the very weakly bound nuclei such as ¹¹Li, ⁸He, ⁶He etc by core knockout reaction etc.
- 7 This way one can probably arrive at "HOLLOW" nuclei.

In the present project we would like to study the heavy ion knockout on ²⁸Si and ³²S using ²⁴Mg and ²⁸Si Beams respectively at the Mumbai LINAC in order to compare these reactions with the corresponding (α,2α) reactions. ²⁸Si(²⁴Mg,2 ²⁴Mg)⁴He vs ²⁸Si(α, 2 α·) ²⁴Mg ³²S(²⁸Si,2 ²⁸Si)⁴He vs ³²S(α, 2 α·) ²⁸Si.

This way we will be able to observe the influence of bigger and bigger knockout vertices on the knockout reactions.

