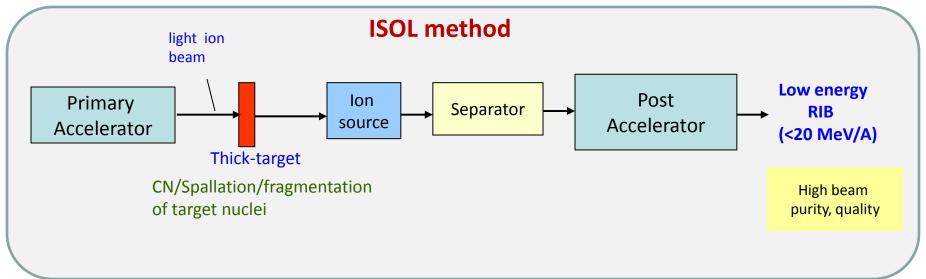
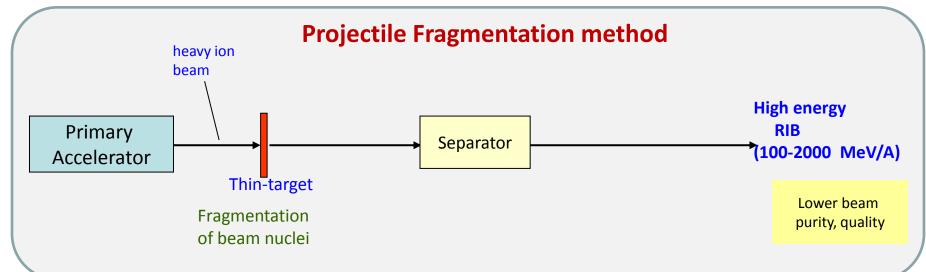

An overview of Radioactive Ion Beam facility at VECC

Shashi Srivastava* VECC, Kolkata

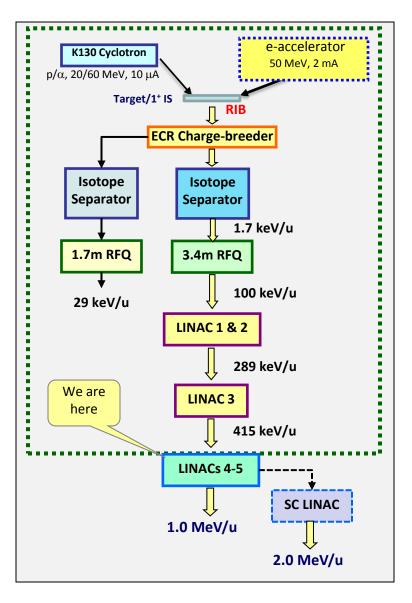
* On behalf of the VECC RIB group


RIB : the beginning of a new era in Nuclear Physics, Nuclear Astrophysics, Material Science, Biology, etc.

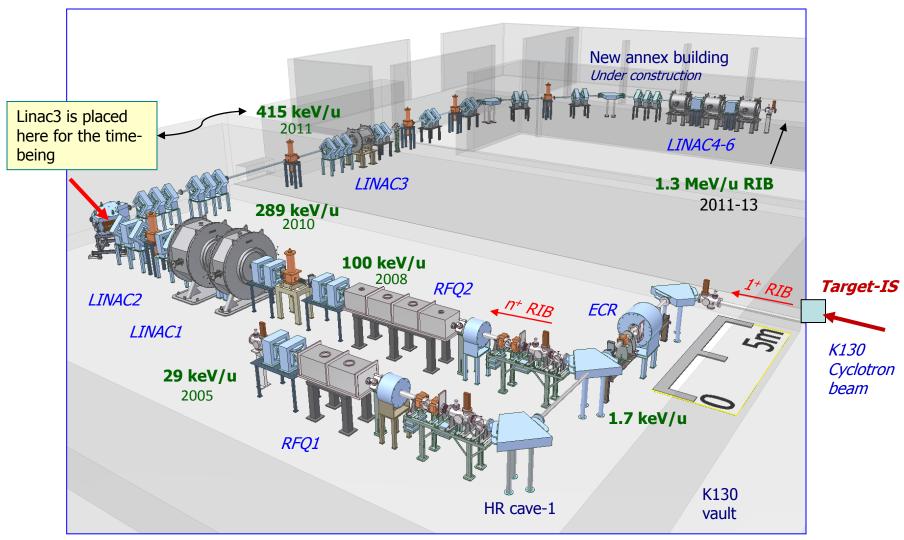

- Nucleo-synthesis in normal stars and in explosive stellar events (we are but stellar dusts)
- Stellar evolution
- Nuclear structure: Study of exotic nuclei;
- Production and study of Super Heavy Elements
- Material properties using various radioactive beams as dopants
- Atomic physics, Biology; radioisotope production
- State of the art Accelerator technology
- Human Resource Development
- New / unanticipated findings

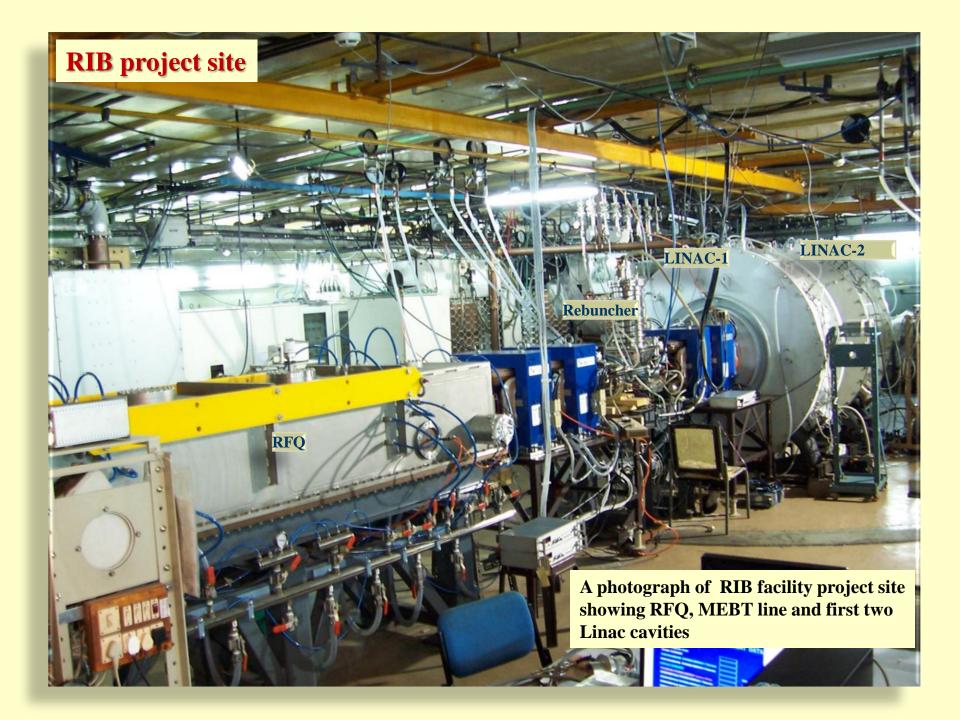
Production of RIB: Two Complimentary ways

Intensity (RIB) = Intensity (primary beam) x production cross-section x no. of target atoms x efficiency factor



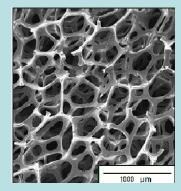
Challenges


- Int. (rib) should be adequate for various experiments (1 10⁹ pps)
 Int. (rib) = Int. (primary Beam) x cross-section x No. of target atoms/cm² x efficiency factors (diffusion, ionization, separation, acceleration)
- High intensity primary beam (ADSS; accelerator-energy interface)
- Development of thick targets that can sustain high beam power (ADSS)
- Efficient ionization, separation & post-acceleration of RIB
- Both PFS & ISOL type facility to cover all ranges of half-life
- State of the art detector systems (traps, arrays, ISOL, PFS, storage rings) & New ideas and detector arrays to improve S/N ratio


Towards our aim.. What have we achieved so far?

- Accelerated stable isotope beams to 415 keV/u
- Developed 1st RFQ in the country (29 keV/u). Second RFQ commissioned in 2008 (100 keV/u). Fully indigenous development.
- Developed 1st IH-Linac in the country. Linac-1 & 2 & 3 are already commissioned. Stable ion beams accelerated to 415 keV/u at the end of Linac-3.
- •Linac 4 ready to be commissioned. Linac 5-6 being ordered. To be installed in new annex building by 2013
- Target R&D , on-line experiments ongoing.
- Experiments using cyclotron beam for acceleration of Radioactive Ion Beams are underway. ^{42,43}K, ¹⁴O, & ⁴¹Ar beams are already produced
- Superconducting Electron Linac development started, in collaboration with TRIUMF Canada.
- Ion-beams from the facility have been used for material science experiments.
- Fragment Separator based experiment & PFS design (collaboration with RIKEN)

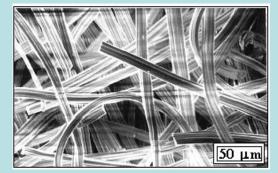
Schematic layout of RIB beam-line at VECC



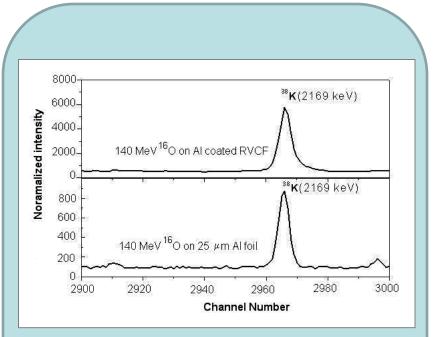
Production of RIB: R&D on Thick target

• Targets should be porous : Efficient & Fast release of radioactive atoms

• Targets should withstand beam irradiation for days together


Target material coated on base matrix of RVC : Reticulated Vitreous Carbon

SEM of RVC Foam


DO Jum

RVC Foam with Al₂O₃

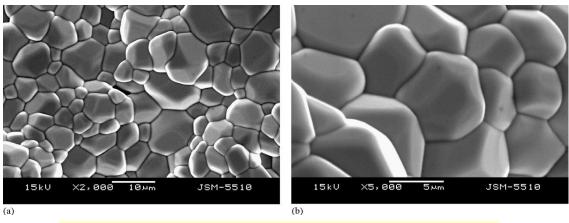
RVC Fibres with Al₂O₃ *Ceramics International, 34 (2008) 81*

Target release experiments with Oxygen beam from K130 cyclotron

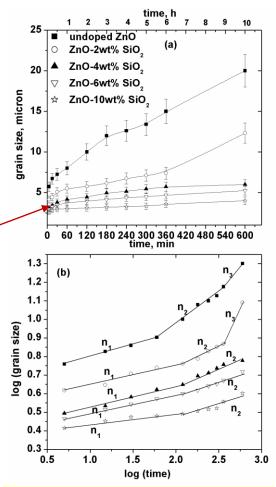
10 times Yield enhancement in Aluminum coated RVCF (top) as compared to Al foil (bottom) : effect of increase in surface to volume ratio is clearly seen

Nucl. Instrum. & Meth. A539 (2005)54

Grain growth studies in ZnO - R&D on high power targets

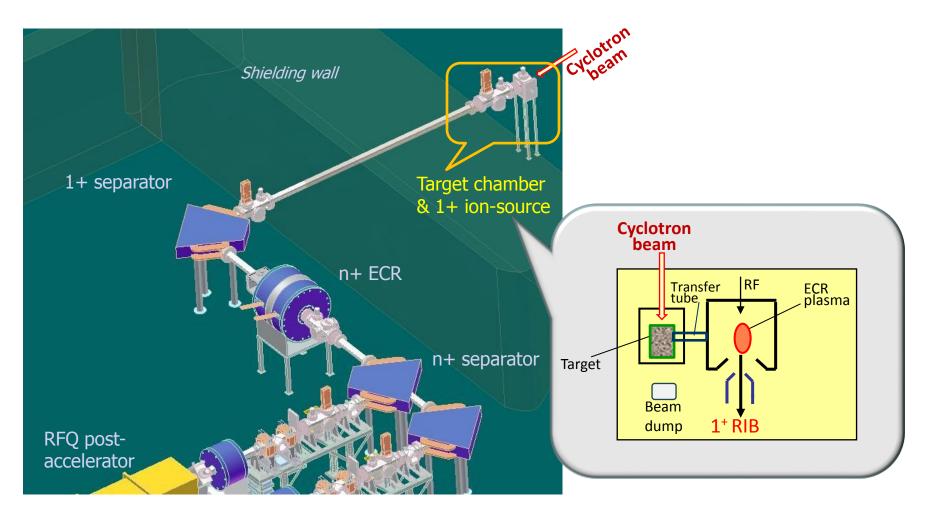

Ceramic International 34 (2008) 81; Ceramic International 37 (2011) 2679

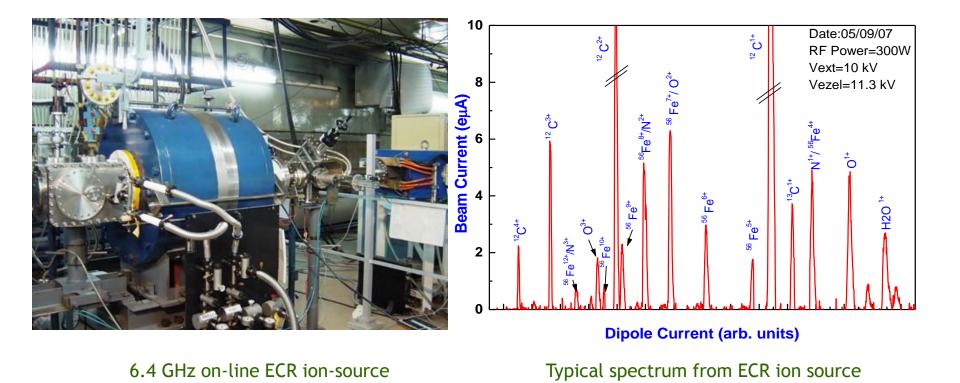
• RIB intensity critically depends on radioactive isotope yield from the target.


• Radioactive atoms should efficiently and quickly diffuse out of the target. Target should withstand high primary beam intensity without getting damaged.

• Sintering & grain growth in target due to beam heating hinders release of radioactive atoms and leads to localized heating which amplifies grain growth. Studies show that grain size of \geq few microns reduces release efficiency.

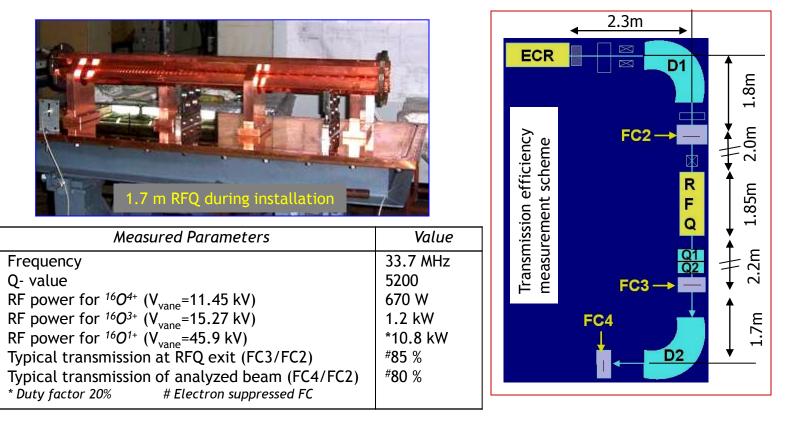
• Our studies at VECC on ZnO have shown that grain growth can be controlled to< 20 micron grain size if one chooses nano-crystalline target compound. Grain growth can be further controlled to < 5 micron by Silica doping of 4 wt %.


SEM image of nano-crystalline ZnO sintered at 1300 $^\circ C$ for 10 hrs. Grain size increase is ~ 20 micron size.


(top) Grain growth for un-doped and Silica doped ZnO sintered at 1300 °C for 10 hours (bottom) Kinetics of grain growth changes due to silica doping

Ionization: Target-ion-source (1+) and 2 ion-source Charge Breeder (n+)

NIM A547 (2005)

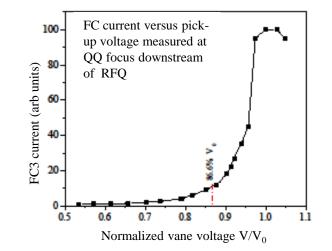


Electron Cyclotron Resonance ion source

Acceleration: 1.7 m RFQ commissioned in Sept. 2005 India's first RFQ

Rev Sci Instrum. 78 (2007) 043303 ; Rev. Sci. Instrum. 80, (2009) 103303

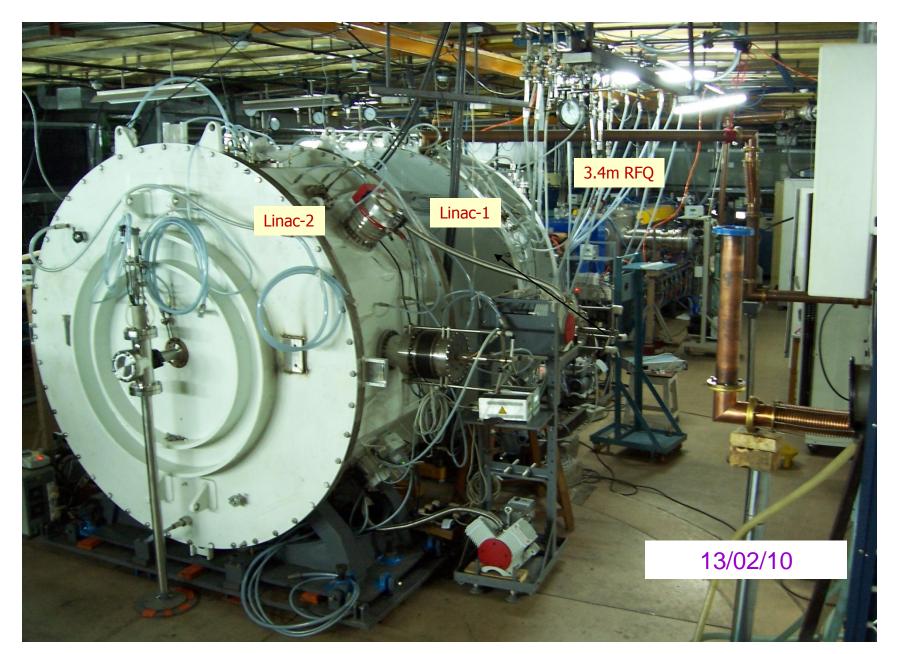
RFQ constructed with complete indigenous technology

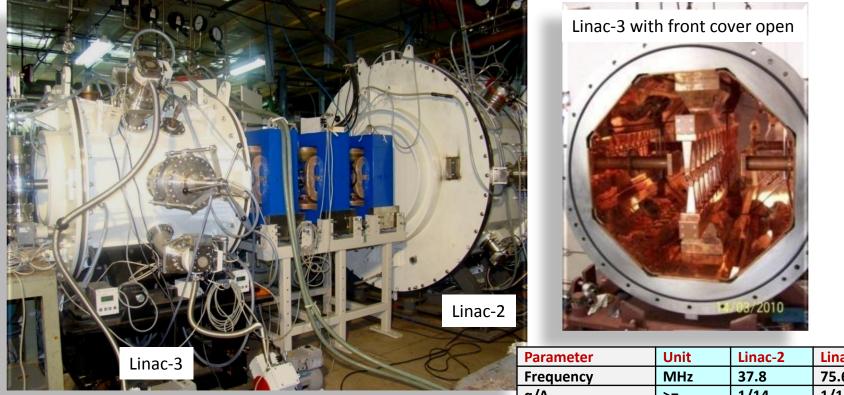

 Machining of Vane, post & other components at Central Mechanical Engineering Research Institute (CMERI), Durgapur (200 km from Calcutta)


• RF transmitters made by SAMEER, Mumbai ; RIKEN's (Japan) help in physics design

3.4m RFQ: commissioned in July 2008

Rev Sci Instrum. 81 (2010) 023301

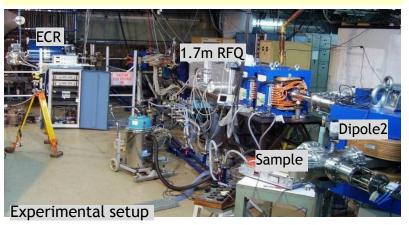

- q/A=1/14 ; input = 1.75 keV/u; output = 100 keV/u, 3.4m long, vane length ~ 3.12m, resonating at 37.83 MHz
- RFQ made at CMERI Durgapur, Cavity, Cu plating at GSI, Darmsadt via Danfysik
- Measured transmission efficiency at RFQ exit for $O^{5+} \simeq 90~\%$



Linac Modules

LINAC-3 Commissioned in March 2011

414 keV/u (5.8 MeV), 400 nA ¹⁴N⁴⁺ beam accelerated through LINAC-3

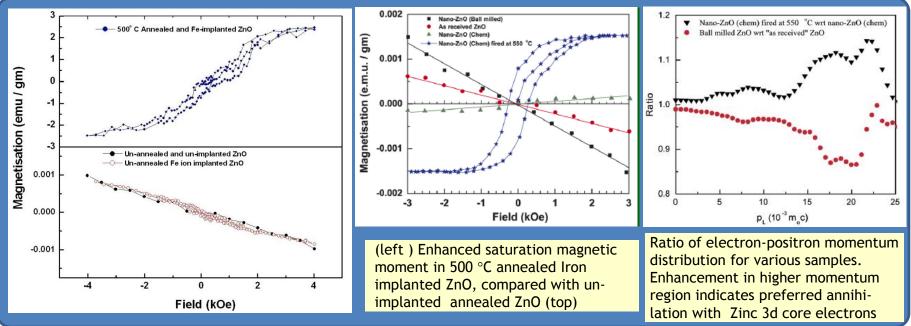

A photograph of Linac-3 installed downstream of Linac-2 for beam test; Eventually will be moved to adjacent cave

Parameter	Unit	Linac-2	Linac-3
Frequency	MHz	37.8	75.6
q/A	>=	1/14	1/14
E(in)	KeV/u	186.2	289.1
E(out)	KeV/u	289.1	413.9
Peak Vol.	kV	±107.8	±75.8
Length	m	0.871	0.913
Inner Dia	m	1.72	0.8
Accln. Grad.	MV/m	1.79	1.99
Power (Calc)	kW	9.84	11.5

Study on room temp. ferromagnetism in ZnO; effect of Fe Ion-implantation

Nucl. Instrum. & Meth. B267 (2009) 1783 ; Phys. Lett. A371 (2007) 482

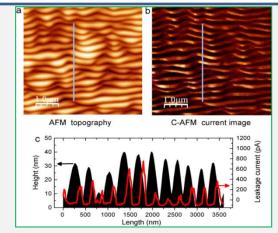
Ion implantation of Fe beam accelerated in RFQ

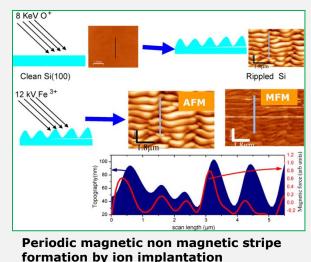


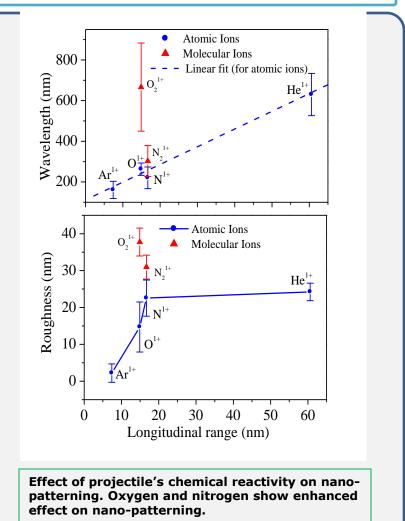
Spintronics : ZnO - potential candidate ; prediction that it may show ferromagnetic ordering at room temperature

• Positron annihilation studies at VECC show clearly that defects govern room temperature ferromagnetic properties of nano-crystalline ZnO.

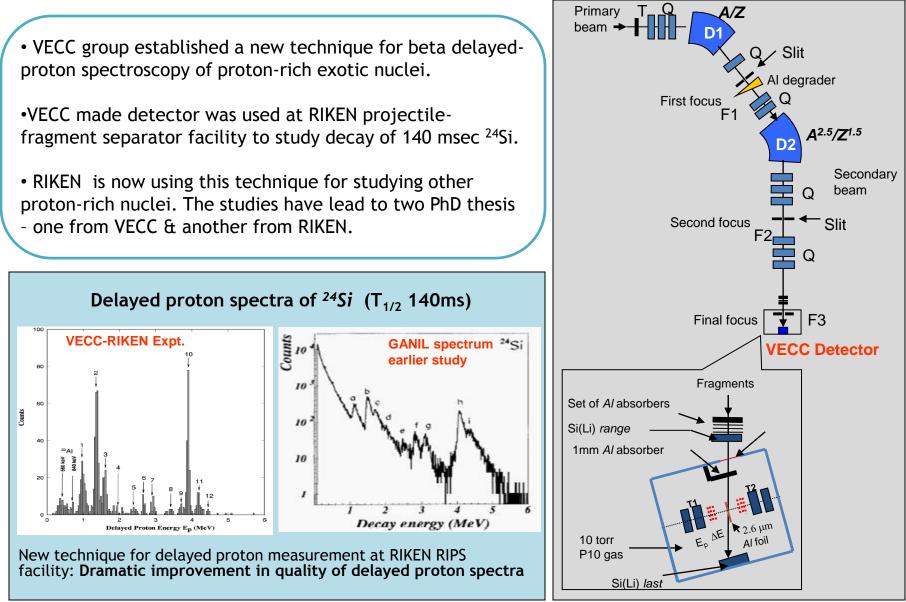
• Enhanced positron annihilation with core electrons of Zn observed in 500 °C annealed ZnO ; strong correlation between defects and ferromagnetism seen experimentally

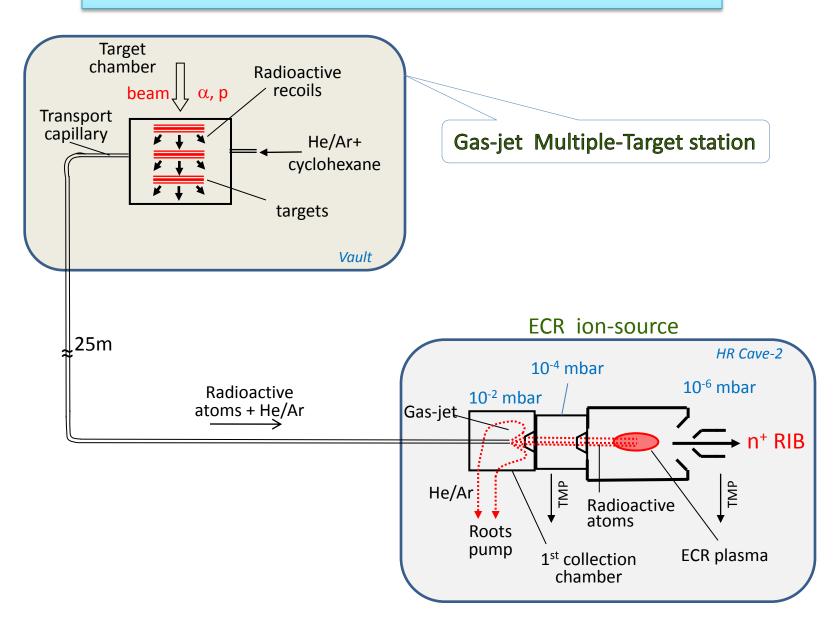

• Two orders enhancement in saturation magnetic moment seen in Fe ion-implanted ZnO (500 °C annealed). For this study 10^{16} 56 Fe⁶⁺ ions of 1.63 MeV were implanted in 0.75 micron ZnO sample.


Surface science studies using ion-beams from the facility


Appl. Surf. Sci. 257, 6775 (2011), Appl. Surf. Sci. (2011) doi:10.1016/j.apsusc.2011.07.038; Nucl. Instr. & Meth. xx, xxx (2012) S. Bhattacharjee, et.al., AIP Conf. Proc. **1349**, 611 (2011); J. Phys. Cond. Matt. 22, 175005 (2010).

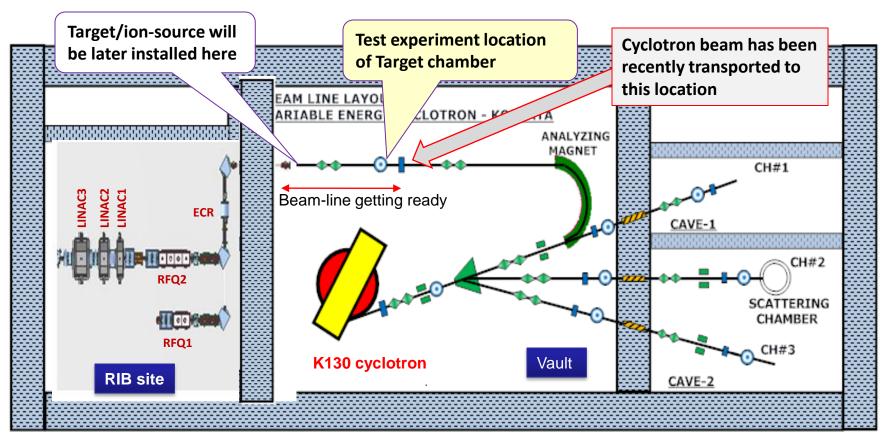
Ion beam induced nano-pattern formation and coulomb sputtering studies on Silicon oxide, Zinc Oxide, Carbon films etc. using oxygen, carbon, argon, nitrogen ion beams from the facility.

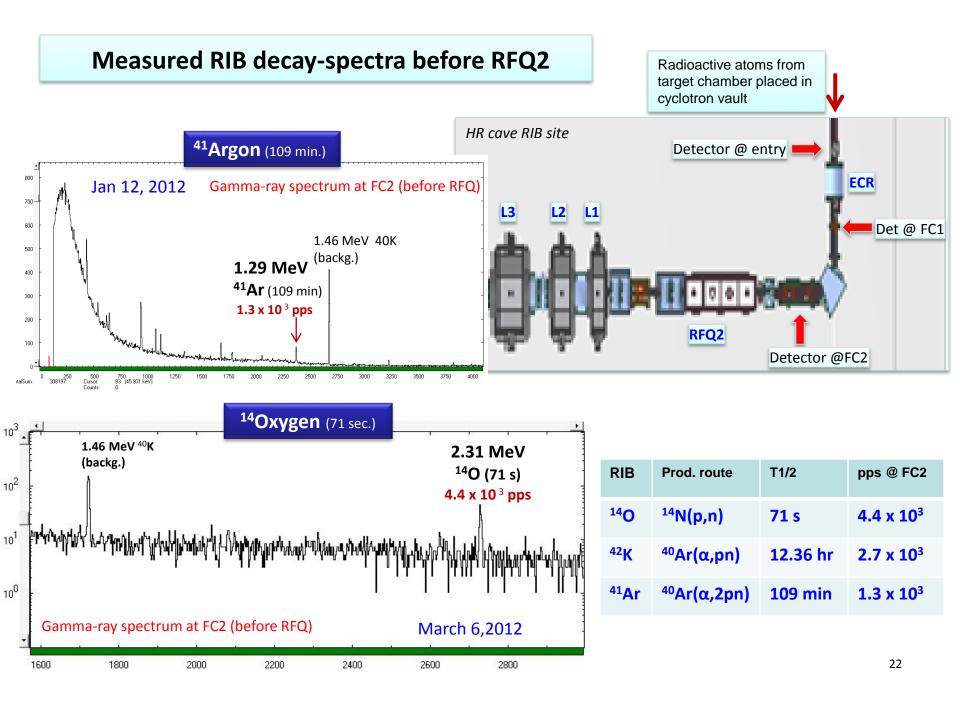

Periodic semiconducting insulating stripes formation by keV oxygen ion bombardment



A novel detector & technique for delayed proton measurement

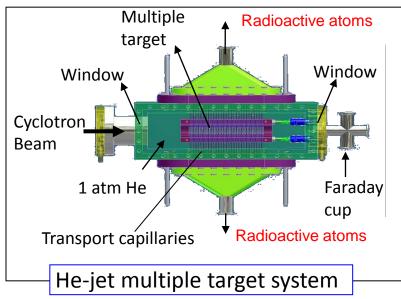
Phys. Rev. C 63, 024307 (2001); Phys. Rev. C 80, 044302 (2009); Eur. Phys. J. A 42, 375-378 (2009)


Transport and production of RIB- a new approach



Successful production of RIB – first test experiments

Aim:

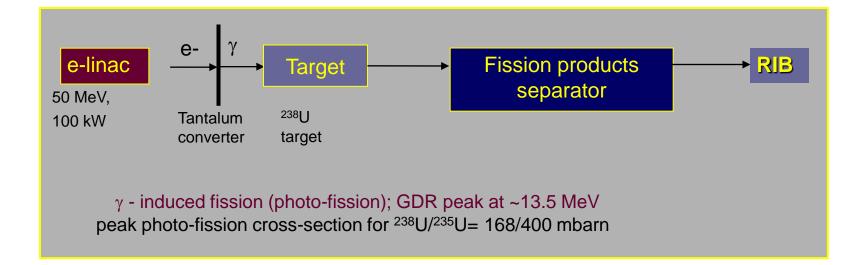

- 1. To transport radioactive atoms to RIB site using Gas-jet Transport system $^{\mathbf{v}}$
- 2. Production of low energy RIB and measurement of yield at FC2 (before RFQ2) $^{
 m V}$
- 3. Acceleration of RIB to 100 keV/u

RI beams to be developed

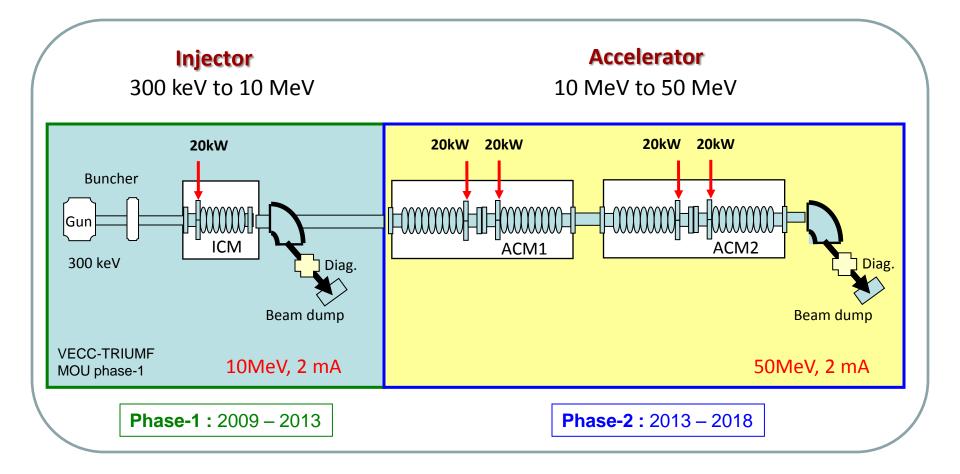
RIB	T _{1/2}	Reaction	Target
¹⁴ O	71 sec	¹⁴ N(p,n)	N ₂
⁴¹ Ar	109 min	⁴⁰ Ar(α,2pn)	Ar
^{42, 43} K	12.4 hrs, 22 hrs	⁴⁰ Ar(α,pxn)	Ar
¹¹¹ In	2.8 days	¹⁰⁹ Ag(α,2n)	Ag
¹⁹ Ne	17 sec	¹⁶ Ο(α,n)	HfO ₂ ,Al ₂ O ₃
⁶⁶ Ga	9.4 hours	⁶³ Cu(α,n); ⁶⁴ Zn(α,pn)	Cu foils, Zinc Oxide
⁶⁸ Ga	68 min	⁶⁵ Cu(α,n)	Cu foils

Publications from RIB project group*

(*in international journals)


(Since the year 2000)

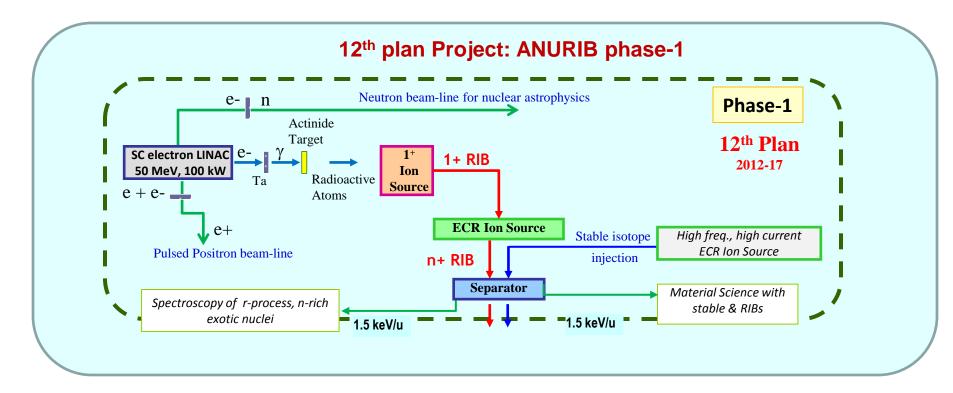
Accelerator development	Nuclear Physics & Material Science Experiments
 Ceramics International, (2011) 2679. Target Nucl. Instrum. & Meth. A 631 (2011) 1 MEBT Pramana 75 (2010) 485. MEBT Rev. Sci. Instrum. 81, 023301 (2010); RFQ2 Rev. Sci. Instrum. 80, (2009) 103303. RFQ2 Ceramics International, 34 (2008) 81. Target Nucl. Instrum. & Meth. B261(2007)1018. RIB facility status Rev Sci Instrum. 78 (2007) 043303. RFQ1 Nucl. Instrum. & Meth. A562 (2006)41. Beam-line Nucl. Instrum. & Meth. A562 (2006)182. Linac Nucl. Instrum. & Meth. A547 (2005)270. Charge breeder Nucl. Instrum. & Meth. A539 (2005)54. Target Nucl. Instrum. & Meth. A533 (2004) 37. RFQ1 Nucl. Instrum. & Method A 533 (2004) 37. RFQ1 Pramana 59 (2002) 923. RIB facility Pramana 59 (2002) 957. RFQ1 Nucl. Instrum. & Meth. A 447 (2000) 345. charge breeder 	 Nucl. Instr. & Meth. xx, xxx (2012) Materials Science Forum, 699 (2012) 1-38 J of Phys. Cond. Matt. 23 (2011) 155801 Appl. Surf. Sci. 257 (2011) 6775 Solid State Communications, 150, (2010) 2266. J. Phys.: Condens. Matter 22 (2010) 175005 Nuclear Instru. & Method B267 (2009) 1783. Phys. Rev. C 80, 044302 (2009) Eur. Phys. J. A 42, 375-378 (2009) J. of Phys: Cond. Matt. 21 (2009) 445902 Appl. Phys. Lett. 93, (2008) 103102. Materials Characterization 60 (2009) 1014. J. of Phys. D 41 (2008) 135006. Appl. Phys. Letts. 93 (2008) 103102 J of Phys. D 41 (2008) 135006. Appl. Phys. Lett. A371 (2007) 482. J of Phys. C 19, (2007) 236218. J of Phys. C 19, (2007) 236210. J. of Mat. Sc. 40 (2005) 5265. Physica C, Vol416, (2004) 25. Nanotechnology 15 (2004) 1792. Physica C 416 (2004) 25. Phys. Rev. C 63 (2001) 024307.


4 Ph. D theses during 2004-2007; 2 PhD thesis submitted recently; 2 M.Tech Thesis

Superconducting Electron Linac (VECC-TRIUMF Collaboration)

- 50 MeV, 2 mA; 100 kW CW, 1.3 GHz, 2 deg K
- For production of neutron rich nuclei through photo-fission of Uranium
- Also a strong neutron source of intensity 10¹⁴ per sec

50 MeV Superconducting Electron Linac - Schematic



The ultimate goal : ANURIB facility

<u>A</u> <u>N</u>ational Facility for <u>U</u>nstable and <u>Rare</u> <u>Isotope</u> <u>B</u>eams

27

Financial outlay of ANURIB phase-1

No.	Major Activity	Expenditure (Rs. Crore)
1.	Target Modules, Remote handling, High Power Beam Dumps	27.00
2.	 ECR ion-sources, LEBT line, Acc. R&D, Isotope Separator facility & other expt. facility Electron Linac Accelerator Cryo-Module (ACM) for acceleration from 30 to 50 MeV; R&D on High current injector (comprising of ECR, RFQ, & Linac delivering beam energy up to 2.5 MeV) & Misc 	
3.		
4.	Building (phase-1) and Services : electrical power, air-conditioning, LCW plant, Cryogenic & other infrastructure services	75.00
	Total (Rs. in Crore)	165.00

12th plan ANURIB phase-1 activities

1. Physics & Engineering Design of entire ANURIB facility (both phases)

2. Construction of high power actinide target modules, Accelerator Cryo-Module (ACM) for electron-linac, ECR ion-source, low energy beam-line (Isotope Separator),

3. Experimental facility for 1.5 keV/u beams – nuclear spectroscopy of r-process nucleosynthesis nuclei, laser spectroscopy, ion-beam based material science

- 4. Design of phase-1 building & AERB clearance
- 5. R&D on high current injector, prototype development
- 6. Construction of Phase-1 building that will house the following:
- (i) Electron linac (ii) Target stations (iii) ECR ion-source (iv) Isotope separator(v) Neutron facility cave (vi) Misc. expt. cave (vii) positron cave
- 7. Identification & development of vendors
- 8. Collaborations : national & international; Workshop/Symposium on ANURIB

Thank You!

Intensity of RIB for various experiments (ISOL method)

$I_{RIB} = I_{primary} * N_t * \sigma * \eta$

Physics Topics	Reaction & Techniques	Beams	Desired Intensities particles/s	Energy Range MeV/u	
1. Rapid proton capture (<i>rp</i> -process) Coulomb dissociation		¹⁴ O, ¹⁵ O, ²⁶ Si, ³⁴ Ar, ⁵⁶ Ni	10 ⁸ - 10 ¹¹ 10 ⁵ - 10 ¹¹	0.15 - 15	
2. Studies of N = Z nuclei, symmetry study	Transfer, fusion, decay studies	⁵⁶ Ni, ⁶² Ga, ⁶⁴ Ge, ⁶⁸ Ge, ⁶⁷ As, ⁷² Kr	10 ⁴ – 10 ⁹	0.1 - 15	
3. Decay studies of decay ¹⁰⁰ Sn		¹⁰⁰ Sn	1 - 10	low	
4. Proton drip-line decay, fusion, transfer Studies		⁵⁶ Ni, ^{62,66} Ge, ⁷² Kr,	10 ⁶ – 10 ⁹	5	
5. Slow neutron capture capture s-process		^{134,135} Cs, ¹⁵⁵ Eu,	10 ⁸ - 10 ¹¹	0.1	
6. Symmetry studies decays, traps with Francium		^A Fr	10 ¹¹	low	
7. Heavy element fusion, decay studies		⁵⁰⁻⁵² Ca, ⁷² Ni, ⁸⁴ Ge, ⁹⁶ Kr,	10 ⁴ – 10 ⁷ 10 ⁶ – 10 ⁸	5 – 8	

Intensity of RIB for various experiments cont..

8. Fission limits	fusion, fission	¹⁴⁰⁻¹⁴⁴ Xe, ¹⁴²⁻¹⁴⁶ Cs, ¹⁴² I, 10 ⁷ - 10 ¹¹ ¹⁴⁵⁻¹⁴⁸ Xe, ¹⁴⁷⁻¹⁵⁰ Cs 10 ⁴ - 10 ⁷		5	
9. Rapid neutron capture (<i>r</i> -process)	capture decay mass measurement	¹³⁰ Cd, ¹³² Sn, ¹⁴² I,	10 ⁴ – 10 ⁹	0.1 – 5	
10. Nuclei with large Neutron excess	Fusion, transfer, deep inelastic	¹⁴⁰⁻¹⁴⁴ Xe, ¹⁴²⁻¹⁴⁶ Cs, ¹⁴² I, ¹⁴⁵⁻¹⁴⁸ Xe, ¹⁴⁷⁻¹⁵⁰ Cs,	10 ⁷ – 10 ¹¹ 10 ² – 10 ⁷	5 - 15	
11. Single-particledirect reactions,States, effectivenucleon transferNucleon-nucleoninteractions.		¹³² Sn, ¹³³ Sb	10 ⁸ – 10 ⁹	5 - 15	
12. Shell structure, Weakening of gaps, Spin-orbit potential	mass measurement, Coulomb excitation, fusion, nucleon transfer, deep inelastic	^A Kr, ^A Sn, ^A Xe,	10 ² – 10 ⁹	0.1 - 10	
L			1		

RFQ : India joins the select club

natureINDIA

Biplab Das

Articles by subject

- Biotechnology
- Cell & molecular biology
- Chemistry
- Clinical medicine
- Developmental biology • Earth & environment
- Ecology & evolution
- · Genetics
- Materials
- Neuroscience
- · Physics
- Space & astronomy

Articles by keywords

Rare ion beam

A big indigenously built machine sits in the campus of the Variable Energy Cyclotron Centre (VECC) in Kolkata. It hums into action occasionally prying open many secrets of the universe with its energetic radioactive ion beams (RIB). Alongside cracking puzzles like how

Cosmos and cancer

The RIB project site at VECC.

technology also generates energetic particles to selectively kill unruly cancer cells

chemical elements were born in the

fiery cauldron of stars, the RIB

Researchers at VECC have designed the radio frequency guadrupole (RFQ) accelerator that accelerates low energy heavy ions¹. "It is a three-in-one accelerator - it accelerates, bunches and focuses the ion beam," says

This article elsewhere Teb 6. 2012 ok Chakrabarti of VECC.

Slogs linking to The VECC team has created the facility in collaboration with

Online edition of India's National Newspaper Wednesday, Oct 05, 2005

National

Ads by Google News: Front Page | National | Tamil Nadu | Andhra Pradesh | Karnataka | Kerala | New Delhi | Other States | International | Opinion | Business | Sport | Miscellaneous | Engagements | Energy Systems Advts: Classifieds | Employment | Obituary | Search Free Technical National Search Engine 🖃 🕒 Search Thousands India joins select club in particle technology of Catalogs www.globalspec.com Special Correspondent KOLKATA: India's first heavy ion Radio Frequency Ouadruple

Kolkata Calcutta India Know Before You Go. Read Reviews from Real Travelers.

www.TripAdvisor.com

Particle physics

Potential With 7

Keys Of Quantum Physics & Mind

Explode Your

Creation!

Scientists from across the world have acknowledged the achievement as a hall-mark development in particle accelerator technology in the country, VECC officials told The Hindu on Tuesday.

[RFQ] accelerator has been commissioned at the Department of

Atomic Energy's Variable Energy Cyclotron Centre [VECC] here.

Japan is the only other Asian country to have successfully commissioned such an accelerator which was tried out on a "proof-of-principle" basis for the first time in the United States of America in 1980.

"RFQ is a radio frequency [33.7MHz] cavity of very pure copper that houses four precisely machined vanes which takes care of LightisReal.com/guantur the acceleration, bunching and focusing of ion beams", according

আনন্দবাজার পত্রিকা

১৫ আম্বিন ১৪১২ শনিবার ১ অক্টোবর ২০০৫

সংক্ষেপে ...

পরমাণু বিজ্ঞানে নয়া সাফল্য ভারতের স্টাফ বিপোঁর্চা ব 🗇 কলকাতা

জ্ঞাপানের পরে এ বার ভারতেও রেডিও ফ্রিকোয়েন্সি কোয়াড্র ্পল চালু হল। এশিয়ার ময্যে ভারতই হল দ্বিতীয় দেশ, যেখানে এই 'অ্যাক্সিলারেটর' বা ত্বারক চালু করা হয়েছে। গুত্রবার ভেরিয়েবল এনার্জি সাইক্রোটন সেন্টারের অধিকর্তা বিকাশ সিংহ এক লিখিত বিবৃতিতে এ কথা জ্ঞানান। এটি একটি জটিল এবং অত্যাধ নিক ত্বারক। এর মাধ্যমে পরমাণু ক্রশাকে প্রচণ্ড গতিশীল করে তোলা যাবে। ১৯৮০ সালেই প্রথম মার্কিন যু তত্রাষ্ট্র এই ত্বারক চালু করে। তার পর থেকে খু ব বেশি দেশ এই ত্বারক চালু করতে পারেনি।

doi:10.1038/nindia.2010.77; Published online 14 June 2010 Indian satellite to st tropical water cycle 17 October 2011 Brain protein as pesticide sniffer 13 October 2011

 Estrogen signal in breast cancer

11 October 2011

1100

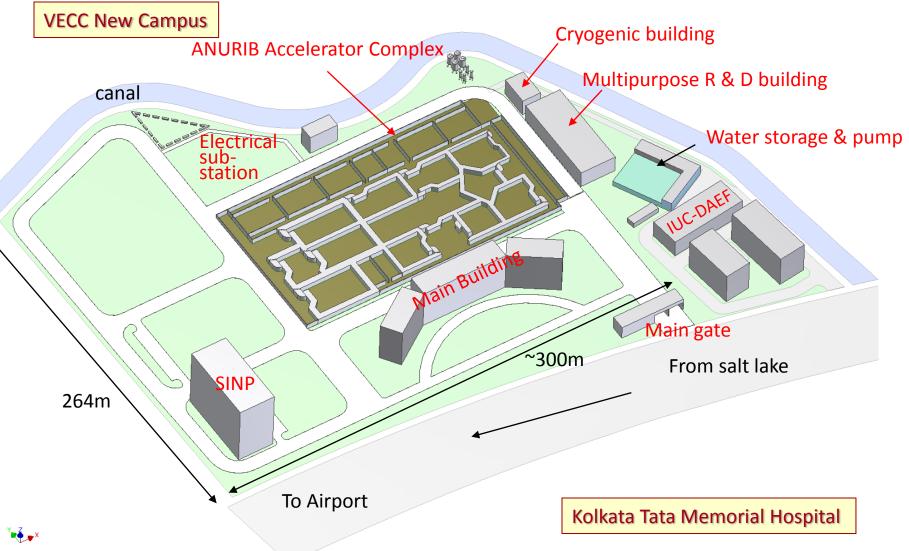
Welcome back:

 Stir away for safe drinking water

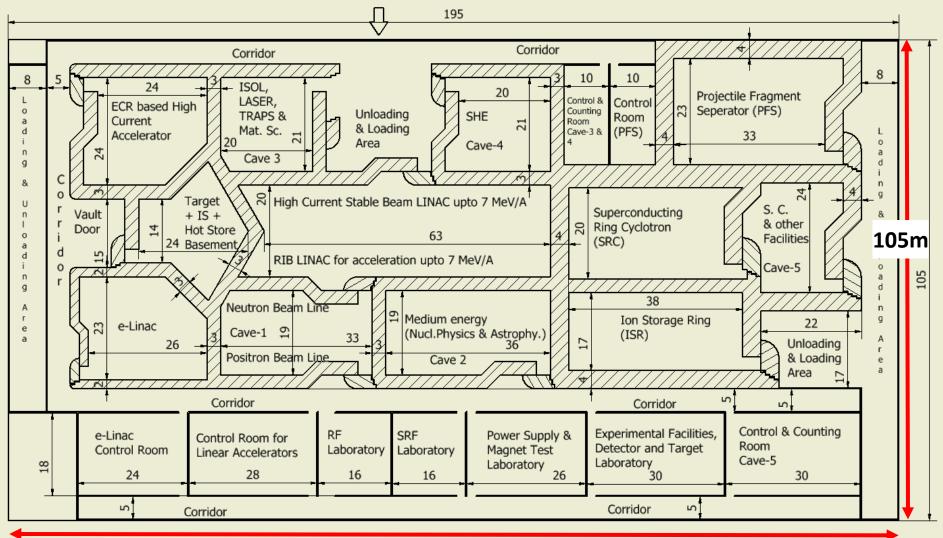
07 October 2011 • US to finance solar power in India

30 September 2011

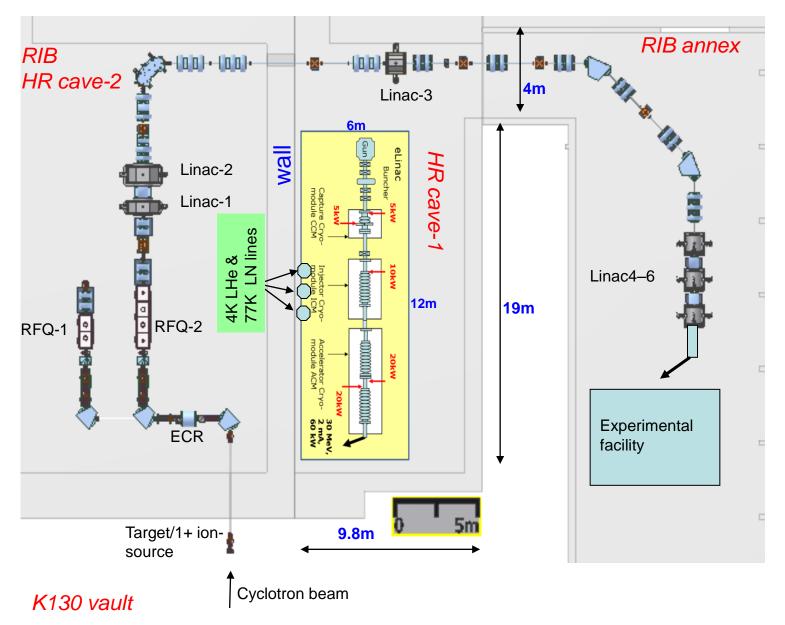
Endowed Chair in Pediatric Clinical alagu Dag

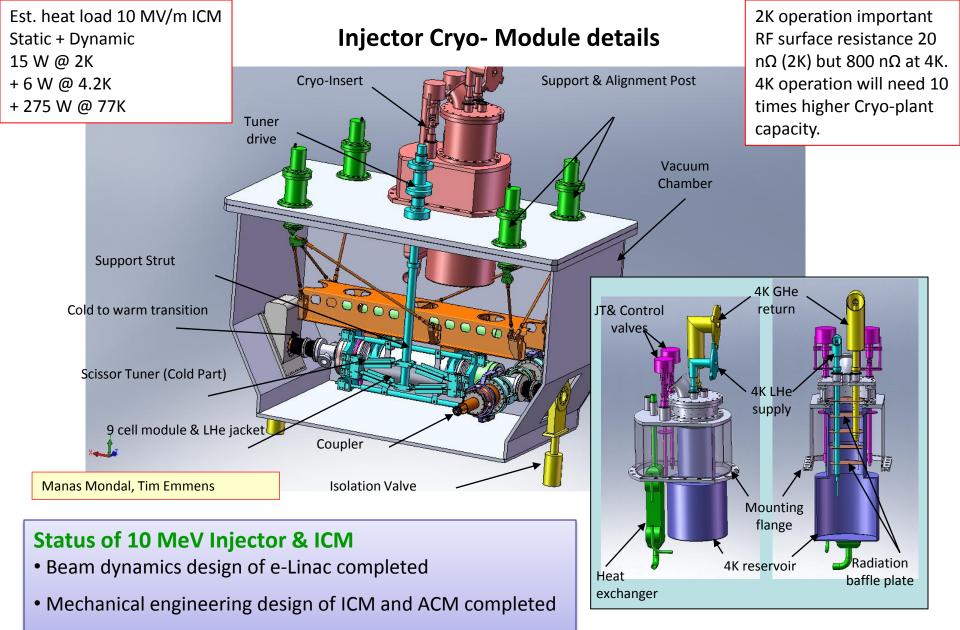

Major components of total ANURIB project and Tentative Cost projection

No.	Major Activity	Expenditure (Rs. Crore)
1.	Super Conducting Electron Linac, acceleration from 30 to 50 MeV, high Power Actinide Target Module, Remote handling, Waste Management, High Power Beam Dumps	60.00
2.	Production and Acceleration of RIB to 6 - 7 MeV/A	140.00
3.	3. Super Conducting Ring Cyclotron for 100 MeV/A acceleration	
4.	Experimental facilities for nuclear physics, nuclear astrophysics, material science, & PF Separator, ion storage ring,	180.00
5.	Building comprising of Accelerator Complex and Services - electrical power, air-conditioning, LCW plant, Cryogenic plant & other infrastructure services	350.00
	Total : Rs. in crore (million US Dollar)	870.00 (174)

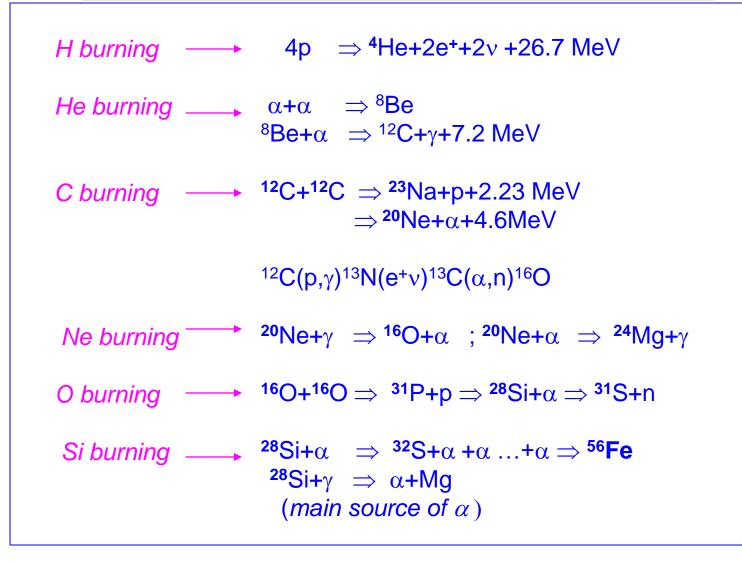

Phasing of Expenditure (Rs. Crore)

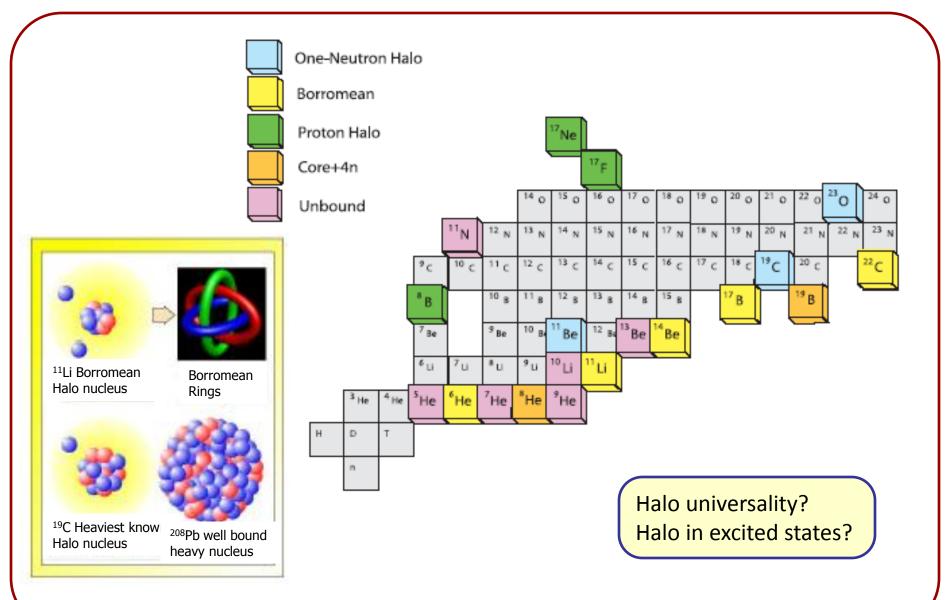
2012-13	2013-14	2014-15	2015-16	2016-17	Total 12th Plan	Spill over 13th & 14 th Plan
2.00	5.00	8.00	75.00	75.00	165.00	600.00 (13 th plan) 105.00 (14 th plan)


VECC Rajarhat site layout (tentative)



Floor layout of ANURIB Accelerator Complex (tentative)


Location for Electron Linac in HR Cave 1



Cryogenic-line design underway

Hydrostatic burning stages leading to ⁵⁶Fe

Halo Nuclei – nuclei with unusually large matter distribution

Halo in excited states

- Excited states close to particle threshold in stable or near stable nuclei may exhibit halo structure
- ¹²C (n, γ) ¹³C ; ¹⁶O (γ, n) ¹⁷O

Reaction rate (expt.) \approx 100 x Reaction rate (1/v)

⇒ Reduction of neutrons in the Heliumburning stage of a star

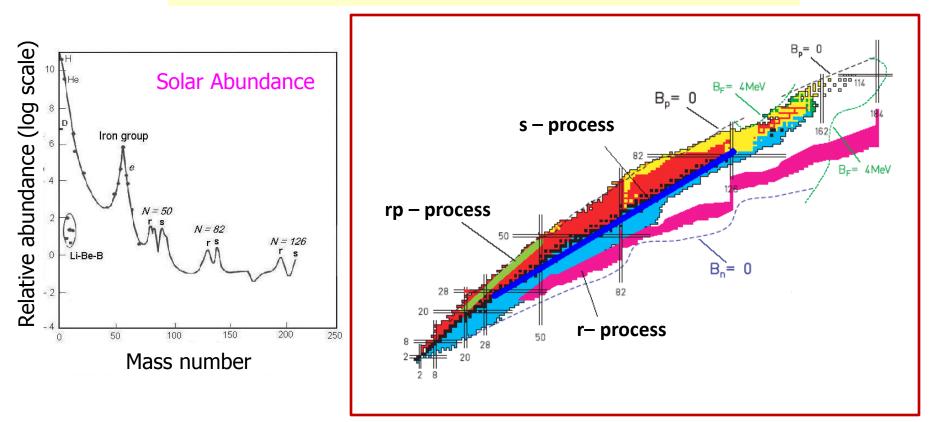
 \Rightarrow significant effect on *s* process (n, γ) nucleo-synthesis rates

Beta-decay of Fully/highly stripped ions & Cosmo-chronology

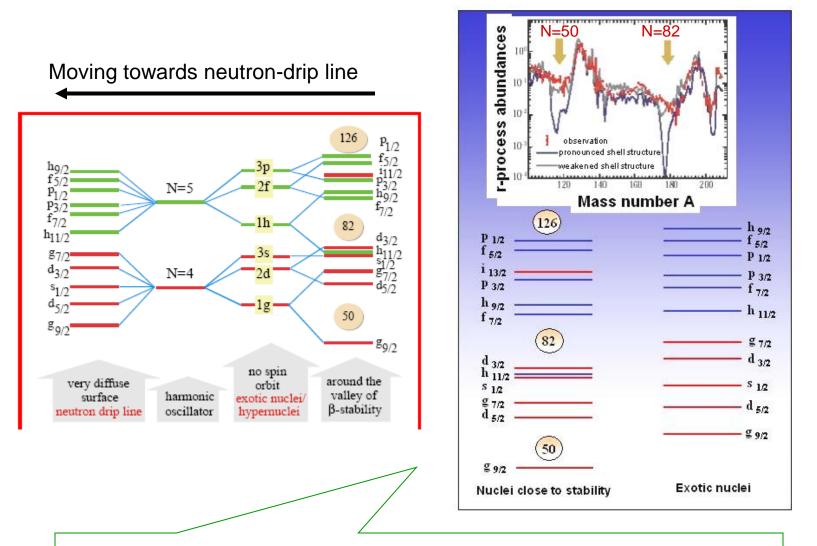
 163 Dy⁶⁶⁺ (Z=66) \rightarrow 163 Ho⁶⁶⁺

(Half-life = 47 days when fully stripped; stable if neutral)

> 187 Re⁷⁵⁺ (Z=75) \rightarrow 187 Os⁷⁵⁺

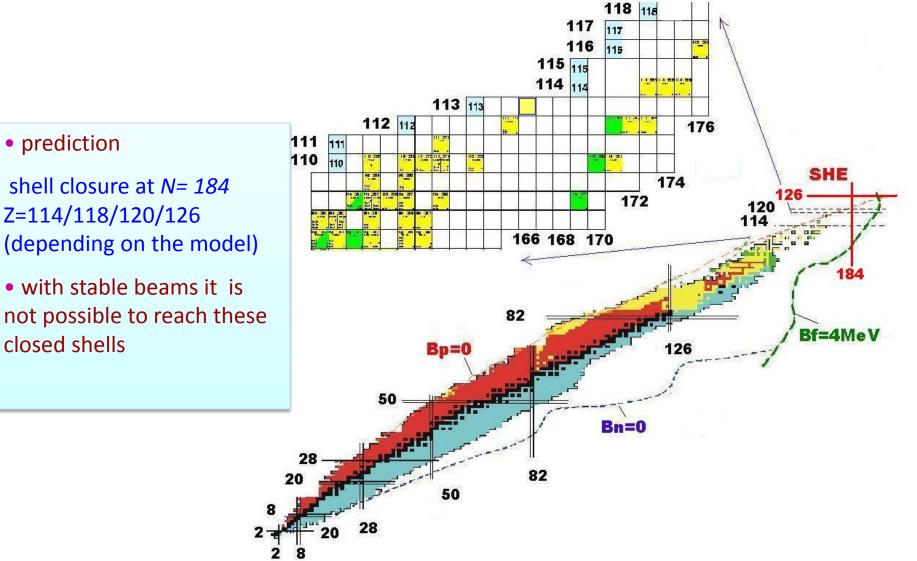

(Half-life = 33 yrs when fully stripped; $4x10^{10}$ yrs if neutral)

correction in galactic age determination


Element synthesis & Exotic Nuclei

(we are but stellar dust)

fusion stops at ⁵⁶Fe ; S-process : up to ²⁰⁹Bi Beyond Bi, only r-process



Weakening of shells away from beta-stability

Calculations with weakened shell structure show a reduced discrepancy between measured and calculated r-process abundances at N=50 and N=82 shell closures

Synthesis of Super Heavy Elements (SHE)

