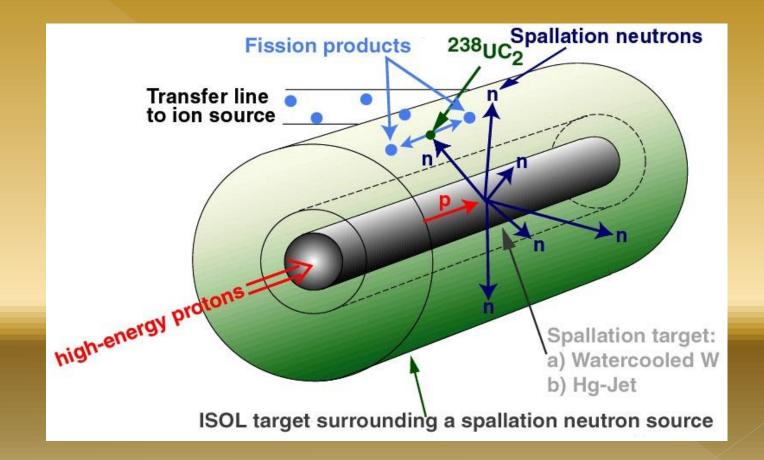
Chemistry at the lead bismuth loop for EURISOL prototype


Susanta Lahiri¹, Moumita Maiti¹, T. Stora²

¹Saha Institute of Nuclear Physics, Kolkata, India ²CERN, CH-1211 Geneve 23, Switzerland Liquid lead-bismuth eutectic : prototype converter target in proposed EURISOL project.

Composition: Melting temperature Boiling temperature 44.5% lead and 55.5% bismuth 123.5 °C 1670 °C.

It has good heat transfer properties.

The EURISOL Project (The ultimate ISOL facility)

- Large volume of liquid Hg or Pb-Bi target will be used as converter target as well as coolant
- Large number and huge amount of radionuclides will be produced in the converter targets: Hg/Pb-Bi when bombarded by a few GeV high current proton beam
- Continuous source of radionulcides

This multi-MW converter target of the proposed "*next generation*" European Isotope Separation On-Line (EURISOL) facility may be able to serve as a potential alternative source of several pronounced radionuclides Identification of these radionuclides are important

 They can be enormous source of useful radionuclides in all branches of sciences especially for clinical applications.

Why large facilities became so important?

- Limitations of low energy medical accelerators
- Reduced reactor facilities/shutdown of reactors

How to identify?

The high shielding from high Z targets is the main constrain for identification of these radionuclides.

Quantification of each radionuclide is important

- To make exact inventory of each radionuclide is important for commercial purpose.
- The successful commercial application may even be helpful to share the cost of such facilities for basic sciences.

How to Quantify?

Constrains:

- High shielding by high Z target
- >Irregular geometry
- >Large number of radionuclides with overlapping peaks.

PROBLEM + SOLUTION RADIOCHEMICAL SEPARATION

We would like to develop chemical separation technique for each radionuclides with high radiochemical and radioisotopical purity --- therefore fulfilling the primary requirement for clinical radionuclides

3

Our proposal is to build *Radionuclide Bank* from proton irradiated Pb-Bi targets

Techniques

Identification & quantification of radionuclides

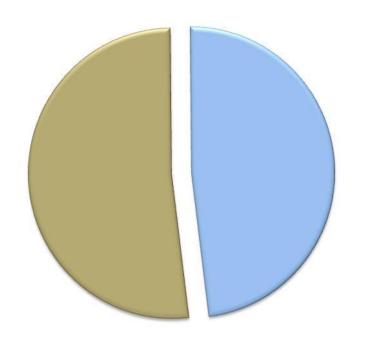
 $> \gamma$ -spectrometry by HPGe detectors

ICP-OES and ICP-MS

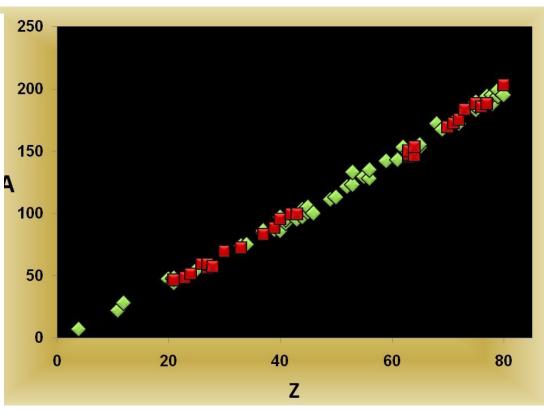
Chemical separation

Radioanalytical techniques (i) LLX (ii) Ion-exchange chromatography (iii) Adsorption (iv) Amalgamation etc.

Thermochromatography


Identification of radionuclides of proton irradiated Hg target

Work report available in this direction


- Report of Neuhausen et al. from PSI
- Large number of radionuclides were identified
- Isolation of radionuclides from liquid Hg target

Results we found

Radioisotope present	Radioisotopes to be confirmed	Radioisotopes to be confirmed
As-72 (26.0 h)	As-74 (17.77 d)	Pr-142 (19.12 h)
Co-56 (77.27 d)	Au-194 (38.02 h)	Pt-188 (10.2 d)
Co-58 (70.86 d)	Au-199 (3.139 d)	Pt-195m (4.01 d)
Co-60 (1925.28 d)	Ba-128 (2.43 d)	Rb-84 (33.1 d)
Cr-51 (27.7025 d)	Ba-135m (28.7 h)	Rb-86 (18.642 d)
Eu-145 (5.93 d)	Be-7 (53.22 d)	Re-183 (70.0 d)
Eu-146 (4.61 d)	Ca-47 (4.536 d)	Re-186 (3.7186 d)
Eu-147 (24.1 d)	Co-57 (271.74 d)	Re-189 (24.3 h)
Eu-150m (12.8 h)	Cs-129 (32.06 h)	Rh-101 (3.3 y)
Fe-59 (44.495 d)	Er-172 (49.3 h)	Rh-101m (4.34 d)
Gd-146 (48.27 d)	Eu-148 (54.5 d)	Rh-105 (35.36 h)
Gd-153 (240.4 d)	Eu-149 (93.1 d)	Ru-103 (39.26 d)
Hf-175 (70 d)	Нf-172 (1.87 у)	Ru-97 (2.791 d)
Hg-203 (46.595 d)	Hg-195m (41.6 h)	Sc-44m (58.61 h)
Ir-188 (41.5 h)	I-123 (13.232 h)	Sc-47 (3.3492 d)
Lu-172 (6.7 d)	I-133 (20.8 h)	Sc-48 (43.67 h)
Mo-99 (2.7489 d)	In-111 (2.8047 d)	Se-75 (119.779 d)
Os-185 (93.6 d)	Ir-192 (73.827 d)	Sm-153 (46.284 h)
Rb-83 (86.2 d)	lr-194 (19.28 h)	Sn-113 (115.09 d)
Re-188 (17.003 h)	Lu-173 (1.37 y)	Tb-153 (2.34 d)
Sc-46 (83.79 d)	Mg-28 (20.915 h)	Tb-155 (5.32 d)
Ta-183 (5.1 d)	Mn-54 (312.12 d)	Tc-95 (20.0 h)
Tc-99m (6.0058 h)	Na-22 (2.6027 y)	Te-121m (154 d)
V-48 (15.9735 d)	Nb-92m (10.15 d)	Tm-167 (9.25 d)
Y-88 (106.616 d)	Nb-95 (34.991 d)	Y-87m (13.37 h)
Yb-169 (32.018 d)	Ni-57 (35.6 h)	Zn-69m (13.76 h)
Zr-95 (64.032 d)	Pd-100 (3.63 d)	Zr-86 (16.5 h)
	Pm-143 (265 d)	Zr-97 (16.744 h)

Radionuclides common with published data
New radionuclides

Identified probable radionuclides by our group

Behavior of "Mo-""Tc activity in bulk Hg environment

Liquid Hg in capped stainless steel vial

⁹⁹Mo-^{99m}Tc activity injected in liquid Hg and homogeneous mixed in Hg by sonication

Radiochemical extraction of ⁹⁹Mo-^{99m}Tc activity from bulk Hg by liquid-liquid extraction using

- \mathcal{O} Dil. HNO₃ (pH = I)
- \bigcirc Dil HCl (pH = 2)

Findings.....

- Mercury shows high self-shielding of ~90%
- A major part of the ⁹⁹Mo-^{99m}Tc (~80%) goes to Hg
- Rest amount is almost evenly distributed between the surface of the steel capsule and in the tiny amount of aqueous solution, which carried the total activity to the mercury.
- As per expectation, bulk mercury partially dissolved in dil HNO₃ removing the clarity of the transparent HNO₃ phase during distillation of ⁹⁹Mo-^{99m}Tc activity from bulk mercury.

Extracting phase	Dil HCl (pH = 2)	Cold (~26°C) water	Hot (~65°C) water
Extraction of activity	~20%	~50%	~20%

Other important properties to be investigated:

➤Long term proton irradiation will introduce enough activity in the LBE assembly, which needs to be separated at a regular frequency in order to recycle the target matrix.

Emphasis will be given to build a data bank of various thermodynamic parameters like adsorption enthalpy, sublimation enthalpy for these radionuclides on Pb-Bi surface.

The study will be extended to the migration behavior of these radionuclides in various solid materials like stainless steel, glass, graphite, etc.

