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Quick outline 

 History (past – now - future) 

 Readout architectures 

 Electronics required for different detectors  

 Pixels, strips, calorimeter , , 

 Electronics technologies 

 Integrated circuits, Interconnect, links, power 

conversion 

 Our major problem: Radiation tolerance 
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Past 
 Electronics has been one of the major ingredients to 

develop modern HEP experiments: 

 Improved performance: Position, Amplitude, Time , etc. 

 Lower noise 

 Higher channel counts 

 Higher integration: IC integration, low power 

 Higher readout rates 

 Sophisticated high rate trigger systems 

 High reliability 

 Radiation tolerance 

 DAQ is also electronics, but not any more “home made” 

At affordable cost 

 Extensive electronics engineering expertise required in 

HEP community 
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Now (the LHC experiments) 
 Radiation “tolerant” Front-End electronics  

(cavern, muon, calorimeter):  
 0.7um – 0.35um CMOS/BiCMOS ASIC’s 

 Qualified COTS 

 Radiation hard FE electronics (trackers) 
 0.25um CMOS (Qualified standard commercial) 

 0.8um DMILL BiCMOS (specialized technology, phased out). 

 Optical links 
 Custom TTC (Timing, Trigger and Control distribution) 

 Custom analog (CMS tracker) 

 Custom digital (GOL serializer, ATLAS tracker) 

 Commercial digital 

 Power 
 Rad tol/hard linear regulators 

 Rad tol power supplies (cavern, calorimeters) 

 FPGA’s for fast and sophisticated trigger systems 

 FPGA’s/DSP/CPU’s for DAQ interfaces 

 Critical integration of electronics, detectors, 
mechanics, cooling  
 Required material for cables, cooling an unpleasant “surprise”. 

 A significant fraction of the cost and R&D needed 
to develop these experiments is in the electronics 
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Future HEP electronics 
 Better resolution -> More channels-> Higher integration -> IC and 

interconnect technology. 

 Low mass trackers -> Minimize cables, cooling, services -> Low power -> 
Low power IC technology and efficient power distribution 

 Acquire more data at higher rate -> High density, high speed data transport 
-> IC technology and optical links. 

 Hostile radiation environment -> Radiation hard technologies 

 High reliability - > Efficient QA procedures 

 Low error rates -> Well designed systems and IC’s with SEU’s immunity 

 High speed flexible data processing -> FPGA based trigger systems, CPU 
based DAQ farms (assumed off detector) 

 Large and complicated systems -> Well designed systems and critical sub-
system integration -> Extensive system/sub-systems simulation/verification, 
Integration tests, Coordination. 

At affordable cost in a world-wide distributed community. 

Electronics technologies for this must come from commercial market, but 
significant efforts required to adapt this to our environment: Radiation, low 
mass, mixed signal, integration, etc. 
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Global architecture I 
 Global front-end/readout 

architecture has major effects on 
electronics 
 Architecture in fact determined by 

electronics capabilities/limitations 

 Triggered: Global event selection 
with local data buffering (and 
processing) to minimize readout 
data 
 Data buffering in hostile environment 

 Specific local processing (trigger 
towers, , , loss of flexibility ?) 

 (Local data sparcification/zero-

suppression) 

 Complicated front-end systems 

  “Moderate” number of links 

High rate experiments (LHCb, 
ATLAS, CMS, ) 

 

On-detector 
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Architecture II 
 Trigger less: Minimal local processing, high speed data transport 

 Send out all “raw” data ASAP 
A. Synchronously for easy pipelined event processing 

B. Sparcified/zero-suppressed with time tag to minimize data (links) 

 Simple high speed front-ends. 

 Large number( >10k) of data (optical) links 

 Flexible data processing in counting house using latest commercial 
FPGA’s/DSP/CPU/PC (No radiation) 

 Moderate rate experiments (LHCb upgrade, CLIC/ILC, , ) 
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Pixel detectors 
 Pixel detectors are our IC technology drivers as high 

integration level vital 

 Better resolution -> Smaller pixels, Higher integration 
 Binary versus analog (TOT) readout. 

 Smaller pixels -> Smaller capacitance -> Better S/N -> 
smaller analog power 

 Limited by pixel to pixel capacitance  

 More pixels, Higher rates (radiation), more features,, ->  

More logic per pixel -> Higher integration,  
Low power digital required 

 Material in today’s pixel detectors are determined by cabling, 
power distribution, cooling, , , sensors, ASICs 

 Complicated digital pixels:  
Full custom -> Synthesized high density standard cells 
Pixel grouping ATLAS 

ALICE 
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Hybrid Pixels 
 Decoupled ASIC and detector technology 

 Standard high density ASIC technology 

 Dedicated sensor technologies (Si, 3D, Diamond, , ) 

 High cost of bump bonding ASIC and detector 
 Multiple technologies under evaluation in HEP 

 Bonding technics from 3D IC technologies will hopefully  

bring improvements on this (more on 3D later) 

 Material: Thinning ASIC to 50 – 100um 
 Delicate combination with bump bonding 

 High radiation level and high rate applications. 

 “Limited” by bump bonding, material, cost 
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Monolithic Pixels 
 Aim: Lower cost, Higher resolution, Lower mass 

 Diffusion based : Charge collection (~100ns)  
 Epi (epitaxial layer), DEPFET (internal gate) 

 Relatively low rate and low radiation 

 Drift based: SOI (KEK), LePix bulk triple well (CERN),  
 “HV” bias critical 

 Can possibly work in LHC environment 

 Simple pixel cells (few transistors) 
 Significant boundary circuits needed. 

 SOI: Digital cells in pixel, Cross talk problems 

 HEP needs 100% fill factor 

 Stitching to make “large” pixel modules 

 Challenges: Radiation tolerance, Speed,  

Rates: on-chip/in-pixel buffering/processing,   
technology dependence. 

LePix (CERN) 
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Pixel photon detector 
 Integration of a pixel detector in a 

photon tube: Hybrid Photon Detector 

 Electrostatic acceleration and focusing of 
photon-electrons on pixel detector. 

 Single photon detection in LHCb RICH 
 Very low noise 

 Same pixel chip as used in “classical” pixel 
detector in Alice 

 Integration in vacuum non trivial (bake 
out, vacuum tightness, out gassing, etc.) 

 Many potential applications  
using HEP pixel chips in HPD’s,  
MCP, , 

 

RICH1 RICH2
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Building pixel systems 
 Building low mass hermetic pixel 

detectors from relatively small pixel 
modules/assembles far from obvious 

 100% coverage, Small assemblies, 
Modules, Power, cooling, readout, ,  

 Ladders, modules, edgeless detectors, , 

 Future:  
 Stitching (to make very large pixel ASIC’s) 

 TSV (Through Silicon Via’s) to have  

abuteable pixel assemblies ? 
 TSVs are “surprisingly” difficult  

 Micro channel cooling ? 

ALICE 

ATLAS 
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Strip detectors 
 High resolution tracking over large surfaces 

(Pixels impractical and too expensive) 

 Ladders, long strips, short strips, strixels 

 CMS and ATLAS upgrades: Binary. 

ALICE: Amplitude information 
 Analog power decreases when going to 130/90 nm. 

65 nm may not give significant gain. 

 Digital power gets dominating so use of modern 
technologies gives lower power. 

 ADC per channel in future ? 
 Very low power 8/6bit SAR ADC or TOT. 

 Connection between FE chip and detector: 
Wire bonding or tap or bump ? 

 Integration in stave/rod or petals ? 

 Powering:  
 CMS DC/DC 

 ATLAS Serial power or DC/DC 

~ 1.2 meter 
Service bus
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Combining pixel/strip trigger 
 CMS track trigger 

 At HL-LHC first level trigger saturates  
(if readout limited to 100KHz) 

 Include tracker Pt information in trigger 
 Send track information for tracks with high Pt. 

 Sufficient Pt resolution, short latency, bandwidth , , 

 Double layer modules with correlation 
 Strips – strips  in outer part 

 Strips – strixels /pixels in inner part (to get Z) 

 Critical: Low mass as not to destroy tracker resolution: Low 
power, high interconnectivity ,  

 Critical interconnect technology and module assembly 
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Full DSP approach 
 The world is going digital: ADC plus powerful DSP processing can be integrated in front-end chip. 

 Digital shaping, baseline restorer, pulse detection, zero-suppression, time tagging, clustering, pulse parameter 
extraction, compression, buffering, link/DAQ interface 

 Very low power ADC’s extensively developed by industry over the last years.  

 Can be bought from specialized IP companies (do not develop ourselves if not required) 

 DSP processing can be done at low power: modern technology, plus power optimized architecture 
and design. 

 Required integration possible with modern technologies 

 Example: S-ALTRO prototype: 16 channels, ~1W, 130nm CMOS 

 No significant crosstalk from digital to analog 

 Power dominated by home designed ADC (~60%) 

 Realistic future aim: 64 channels, 12/10bits, ~1W. 

 Applications: TPC, GEM, Micromegas, calorimeters, ,  

 Pulsed power can reduce power considerable in certain applications (e.g. ILC/CLIC) 
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Calorimetry 
 Large dynamic range: Low power, 40MHz 14/16 bit ADC’s now available as standard 

multichannel chips and as IC IP’s. 

 Good alternative to custom made multi range analog memories 

 Our usual problem: Radiation tolerance. COTS versus modified IP’s 

 Particle flow: Many channels (108), lower resolution per channel,  

Low power critical (power pulsing in ILC/CLIC) 

 CALICE (ILC) currently using multi gain multilevel analog memories (low power, low cost) 

 Multichannel ADC/DSP seems promising for this in the future (R&D cost). 

 Parallel high speed optical links now makes it viable to perform direct ADC in front-end 

and send all raw data to off-detector processing for “classical” calorimeters. 

 Allows very flexible FPGA based calorimeter trigger systems 

 Original CMS Ecal architecture, but abandoned because of cost/implementation of the ~100k links. 

SPIROC,  
Omega – In2P3 
CALICE 
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Timing detectors 
 High channel count, very high time resolution (~10ps) 

detectors become feasible with modern micro 
electronics and novel detectors 

 TOF and RICH detectors based on MCP, SiPM,  

MRPC or MAPMT 
 Examples: Torch for LHCb upgrade, FP420, HPS 

 Fast ADC’s: 55GHz, 8 bit, 2W 
 How to deal with the massive data flow and power? 

 Fast analog memories: 1 – 10GHz Sampling, <1GHz 

bandwidth 
 High time resolution with software pulse fitting to known reference pulse 

 Multiple chips available in community: PSI, LAL, Hawaii - Chicago,  

 Limited number of channels, limited memory, power, external ADC 

 TDC with Constant fraction or TOT time walk 

compensation (ALICE TOF) .  
 ~ps TDCs feasible in modern IC technologies 

 Very high speed circuits now possible with limited 

power, but requires fast detectors 

J.-F. Genat et al., arXiv:0810.5590 (2008) 
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NA62 GTK 
 300um x 300um pixel detector with ~200ps resolution (ASIC: 

75ps) 

 3 stations (10 ASIC’s, 1 pixel sensor) with very high particle 
rate: ~1GHz 

 Time walk compensation with TOT (or CFD) 

 High radiation levels (secondary beam goes straight trough) 

 Demonstrated in beam test with 130nm prototype 
 Final 40 x 45 pixel array ASIC/detector planned for 2012 

 Pixel detectors with this kind of time resolution can open up 

new applications of pixel detectors in HEP, medical, material 
science, bio chemistry, , , 

 What determines ultimate time resolution with silicon pixel ? 

 Signal variation across pixel, signal/noise, Signal 
generation in silicon itself (e.g. 3D detectors) 

 Pixel ASICs and requirements for “low power” 
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Digital Photon counting 
 Single photon counting with SPAD/GAPD 

array with integrated electronics 

 Use of “standard” IC technology 

 SPAD bias only needs a few volts 

 Optimization of SPAD cell took significant 
efforts and many trials 

 Dark count rates, cross talk, detection 
efficiency , , 

 Photon counting, High time resolution 
 32 x 60um micro-cells/pixels 

 Up to 80% fill factor 

 Integrated TDC, readout, configuration , , 

 Enormous effort in development 
 Foundry (NXP 180nm) and user (Philips medical) 

originally part of same large company 

 Aimed at applications with very high system 
costs (medical scanners) 

 Investment that will be very hard to find in HEP 
for such a monolithic detector-chip 

 “Open” to let HEP use their technology 
PH detector seminar: 

https://indico.cern.ch/conferenceDisplay.py?confId=149010 
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On-detector power distribution 
 Distributing low voltage power in large experiments, 

without local power conversion, impractical/impossible 

 Voltage drops -> power loss –> large cables -> material 

 Modern technologies use lower supply voltages: 5V, 3.3, 

2.5, 1.2, 1.0V (down side of new low power technologies) 
 Upgrades: Assume same total power (as more channels) the power 

supply currents will increase and power loss in cables increases with I2 

 Local power conversion becomes a must. 

 Power conversion must occur in very difficult environment: Radiation + 

magnetic field + minimal power dissipation + minimal mass. 

 DC/DC: Inductive (module), Capacitive (on-chip) 
 High input voltage (low cable currents), high efficiency 

 IC technologies that can stand high voltage are not radiation tolerant 

 Compromise: Medium voltage (10v) but still problematic 

 CERN develops Inductive and capacitive DC/DC conversions 

 Radiation tolerance of technology a critical issue (two promising 
technologies used) 

 Shielding and appropriate EMC handling critical but have been 
successfully verified on silicon strip detector modules 

 Serial powering: Distribute current and generate locally 
voltage. Tested by ATLAS SCT. 
 Grounding and fault isolation delicate 

 Power pulsing: significant gain  

possible for certain experiments  
(ILC/CLIC) 
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Optical links 
 Information types :  

Readout, Trigger, Timing, Slow control,  
 Past/current: Separate links 

 Future: Merge all in one bidirectional optical link 

 Must be high speed and highly reliable 
 Redundancy in critical cases 

 Radiation problems:  
 Laser deterioration 

 PIN receiver deterioration  

 Induced multi bit error signals in PIN by particles. Use of extensive 

forward error correction. 

 SEU’s in electronics circuits 

 Versatile / GBT link project 
 Identify and qualify appropriate Lasers and PINs 

 On-detector rad hard chip set:  
Laser driver, Pre-amplifier, interface chip (GBTX), control chip. 

 Off-detector: Commercial Opto and FPGA’s 

 Parallel links for high data rates 
 Custom array transmitters/serializers (ATLAS) 

 Fiber ribbons  

 Commercial array receivers (optical engines) 

 FPGA deserializers 
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CMOS photonics 
 IO is becoming critical bottleneck for high end 

multi-core CPU’s servers  
(CPU <–> Memory) 

 Now: High speed electrical serial connections 

 Future: Hybrid optical chips/links 

 Dream: Integrating opto electronics in (on 3D) 
Integrated circuits  

 On-chip optical modulators, waveguides and 

receivers (laser source problematic in Si) 

 Available when ?. 

Electrical links are still more cost efficient 
(power) for short connections 

 Dream for HEP: Each Front-end chip has an 
optical output. Many challenges 

 Radiation 

 Access to technology 

 Cost of technology 

 Design complexity of such mixed technology 
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Off detector 
 FPGA’s: Fast, flexible , , , The perfect devices for 

HEP when no/limited radiation. 

 CPU’s/DSP: Mainly for DAQ interfaces 

 Mixing FPGA’s, DSP, CPU’s on one module 
 Can give very high performance and very flexible modules 

but implies a huge investment in firmware ( FPGA, DSP, 
CPU, operating system, , ,) 

 Crate based 
 Not (slow) shared parallel bus (e.g. VME) 

 Switch fabric: Multiple high speed serial links on backplane 
to centralized switch/controller  
(High speed LAN on backplane) 

 Power, cooling, front-panel, standardization but flexible, hot 
swap, reliable, affordable 

 ATCA, uTCA, VXS (VME with extra serial link connector) are 
major candidates for HEP 

 ATCA and uTCA gets increasing interest by HEP community  
(uTCA for physics standardization) 

 Trigger systems, DAQ interfaces 

 Plugged into computer: PCIe, ,  
 Can in certain cases skip crates (e.g. link to front-ends) 

 Poses a challenge to keep up with changing PC’s 

Redundant 
PS 

Dual star  
backplane 
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IC technology for HEP 
 Critical to make required front-end systems 

 What we want: 
 High integration level 

 This exists (e.g. 22nm) but hard for us to access because of problems below 

 The most sophisticated technologies may not even be technically appropriate for us. 

 Appropriate for mixed analog/digital designs 

 Radiation tolerance: >100Mrad 

 Non trivial and requires significant effort to find and qualify technology 

 Use special design approaches (and special libraries). 

 Rad hard IC’s may have very strict export restrictions. 

 Affordable access 

 Sophisticated technologies have very high masks costs but is relatively cheap to produce in very large 
quantities (exactly the opposite of what we need) 

 We may even not be allowed access ,as too small a client. 

 Regular MPW runs vital to share mask costs for prototypes and small scale production 

 Easy to use for relatively small HEP IC design groups 
 Modern technologies and tools get more and more complicated 

 Extensive libraries and IP 
 IP blocks often exists, but may be unusable to us because of radiation (& “too” expensive) 

 Our community has a tendency to make all our selves (limited funding in R&D phase, manpower 
available, must keep students occupied , ,) 

 Available for long time ( +10years) 
 This may not be the case for certain technology nodes (select strong nodes, bet on the right company) 
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IC technology 
 HEP options 

 Use easily accessible, cheap and mature technologies  

(e.g. AMS). Life time ?, rad tol ?, Limited integration) 

 The community gets together (e.g. via CERN) to use one 

“modern” technology from a strong  technology node, 

radiation qualify this and get/develop required libraries 
and tools. 

 LHC: 250nm CMOS (IBM) 

 LHC phase 1 upgrades: 130nm CMOS (IBM) 

 LHC Phase 2 upgrades: 65nm CMOS 

Skipping every second node because of long HEP project schedules and 
limited resources to import/qualify technology. 

 Join with similar communities (e.g. EU Europractice) 

 (Specialized technologies: “HV” for DC/DC, monolithic 

pixel, CMOS photonics, ?) 

 Learning how to use these technologies 

 HEP/CERN community 
 Training sessions in use of technology and related tools 

 Micro Electronics User group 

 Micro electronics User exchange (yearly 2 day event) 

 Euro-practice has extensive training program on tools 
and technologies 
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Next IC technology for HEP 
 65nm seems to be a promising/realistic technology for 

future long term HEP developments (e.g. LHC phase 2) 

 Well established ~10 year old technology 

 Confirmed to be a strong node 
 Extensively used for many  long term components (Industrial, 

Automotive, Space, etc.) 

 Affordable  
 Small MPW submissions: 50 – 100k CHF 

 Dedicated engineering run: ~2 x 130nm = ~1M CHF 

 Still uses classical “SiO2” as gate insulator 

 Excellent radiation characteristics 

 To be finalized 

 Appropriate Libraries & tools for HEP institutes 

 Frame contract (team up with Euro-practice) 
 Access conditions: MPW, production 

 Do we need and can we afford/manage more modern 
IC  technologies ? 
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IC tech from CERN 
 250nm, 130nm, (90nm) and 65nm coming 

 250nm: workhorse for all rad hard circuits in 
current LHC experiments 

 130nm: LHC phase 1 upgrades 

 65nm: LHC phase 2 upgrades . 

 CERN supplies/organizes: 
 Technology selection and rad qualification 

 Frame contract and MPW access 

 Design kit, Libraries 

 HEP users: ~50 world wide institutes 

 5 day training, 7 courses,  70 Engineers  
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3D IC technologies 
 Dreaming about the perfect 3D IC technology 

 Affordable, Accessible, Reliable, High yield, , 

 Mixing technologies (Analog, digital, sensor) 

 Several HEP institutes teamed together to get 
access to Chartered/Tezzaron process 
 Chips have been in the pipeline for several years 

 Very low yield 

 TSV Technology have now been modified 

 We may still need to wait for this to mature 

 Will 3D IC become available (to us) ? 
 Before IC technology hits a technology wall (10nm ?) 

 Why use 3D in 130nm when one can “easily” migrate to 90/65nm ? 

 Yield is a major problem 

 One obvious candidate: Stacking of memory chips 
 This is more 3D packaging as only coarse TSVs needed at boundary 

 Memory chips have redundancies 

Gold studs

Wire bondPCB
Very small 
dead space

Heat sink

Detector
eg. CZT

Thick digital ASIC

50um analogueASIC

SLID Bonds

Paul Seller (RAL) 

Fermilab 
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3D technologies 
 3D is fashion, but be careful with confusion 

between different 3D’s 

 3D transistors (Intel 22nm technology) 
 To be capable of continuing Moore’s law without 

excessive transistor leakage. 
 Controls current flow from ¾ sides of transistor 

 37% speed improvement from previous technology (32nm) or half 

power at same speed 

 Expected to scale down to <10nm 

 We can not get access or afford this for many years 

 Alternative: Fully depleted SOI (Silicon On Insulator) 

 3D IC’s 
 Multiple active layers connected with (small) TSV 

 3D packaging/integration 
 Stacking chips on top of each other using: 

 Wire bonding 

 Bump bonding 

 TSV + bump bonding 

 3D detectors 
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System on chip 
 Large design effort required to design complicated system 

on chip implementations 

 Large and well integrated design team 
 Intel makes the office floor plan equal to the chip floor plan 

 Significant design time 

 Significant funding 

 Any small mistake makes the design fail 

 Efficient use of modern high level (digital)  
and low level (analog full custom) design tools  

 But these tools are complicated 

 Example: FEI4 collaborative effort 

 Large mixed signal pixel chip (19 x 20 mm) 

 Developed in collaboration across multiple institutes (~5) 
spread across the world 

 Used dedicated tools to monitor/control status and changes of 
each block 

 Handling radiation effects and SEU. 

 Successfully made first prototype and only few minor 
corrections required for final chip. 

 Things will get more complicated for future complex chips in 
65nm: We put a whole “experiment” on a single chip 
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SEU 
 Radiation induced SEU’s is a major worry in our front-end chips 

 New technologies get more sensitive (and we get multi bit errors) 

 Different types of data must be protected differently: 

 Hit data (loss of single hit, or noise hit) 

 Data flow control (system synchronization) 

 Configuration (chip malfunction until reconfigured) 

 PLL, etc. 

 Appropriate design methodologies required (TMR, Hamming) 

 Design, test, fault injection, design verification, production testing, etc. 

 SEU’s provoked by background radiation now becomes “visible” in high complexity high availability 
commercial applications 
 Cosmic’s, Radioactive isotopes (e.g. from materials used in electronics packaging) 

 Automotive, Telecom and network infrastructure, Computer servers (e.g. centralized banking/ reservation 

systems) 

 They also start to apply special techniques to resolve this and some tools start to appear. 
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COTS 
 Use COTS (Commercial Of The shelves) where ever possible 

(when no radiation !) 

 In radiation environments 

 Radiation qualification (TID, SEL, SEU) of a component is a significant 
workload 

 Predictions from similar circuits can be misleading 

 Difficult to assure that circuits purchased later will have same radiation 
tolerance (change of process, different fab. , second sourcing, etc.) 

 Mill/Space qualified components will often be hard to get or too 
expensive (hermetic packaging and qualification) 

 FPGA’s: Many HEP applications would like to use FPGA’s in moderate 
radiation environments 

 Many modern FPGA can work in modest radiation (TID: 10k – 100krad) 

 Single event latchup has been seen to be OK in several modern FPGA families 

 Single events upsets is the major worry for reliable functioning 
 Antifuse: Normal SEU protection schemes (TMR, Hamming coding, etc.) can be used  

(can not be reprogrammed) 

 Flash: Normal SEU schemes can be used (do not reprogram when radiation is present) 

 SRAM: SEU is a major issue but tools improving on this is appearing. Partial reprogramming 

 Special space qualified FPGA’s exist but are very expensive and have strict export 
restrictions 
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Synergy 

 HEP electronics/detectors can/could have 
good synergy with several domains 

 Medical: Scanners, Xray 

 Material science: Synchrotron Xray detectors 

 Home security: Scanners, detectors 

 Space: rad tolerant electronics 

 [Military] 

 In practice the synergy on electronics is to 
a large extent limited to exchange of 
information and experience. 
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Pixel detector spin off 
 High resolution X-ray 

imaging with spectrum 

information 

 Portable dosimeter 

 In Schools ! 
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Summary 
 Ever increasing integration of detector and its electronics 

 Pixels, strips, calorimeter,  muon, , 

 Use of modern IC, interconnect, opto and power conversion technologies vital to built 

significantly improved HEP experiments. 

 Modern technologies are expensive to get access to and design with but offers 

unique opportunities and allows cheap large scale production. 

 Our community must profit from available technologies the best possible: 
 Use common/shared technologies when possible 

 Exchange of experience across groups: TWEPP, FEE, NSS, MUX 

 We can “never” afford using the latest IC technologies 

 Only when using commercial IC’s but they do “not like” our radiation environment 

 Assure sufficient electronics engineering expertise in HEP is vital. 

 Building complex electronics systems across so many groups requires efficient use of 

modern simulation and verification tools at all levels ( system, sub-system, links, 

module, ASIC, analog front-end ) and efficient communication and coordination. 

 Certain basic technologies/functions are needed by all HEP experiments/sub-

detectors and is better made as common efforts 
 IC technology qualification, libraries, IP’s, Tools 

 Radiation hard optical links 

 Radiation hard and magnetic field tolerant Power conversion 

 Other ? 

If you want to know more on electronics for HEP then come to TWEPP 2012 
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