Event with 78 reconstructed vertices and 2 muons...

CMS Highlights October 1, 2012 Joe Incandela UCSB/CERN

LHC Days in Split

- 6 October 201 Diocletian's Palace / Palazzo Milesi/ Split, Croatia

- Detector Status and Operational Efficiency are very good Recent fills 96-99% efficiency
 - More than doubled the 2012 dataset from that used on July 4th
- We were not so lucky with infrastructure in a few periods
 - 0.5 /fb at B-0 for instance

October 1, 2012

technical stop

Delivered: 142.8 pb⁻¹ Recorded: 140.5 pb⁻¹ 98.4% Delivered: 153.1 pb⁻¹ Recorded: 150.8 pb⁻¹ 98.5%

Detector Performance

3

Strips Preshower ECAL Endcap **ECAL** Barrel **HCAL** Outer HCAL Forward HCAL Endcap **HCAL** Barrel muon RPC muon DT muon CSC

CMS Subsystem	muon CSC	muon DT	muon RPC	HCAL Barrel	HCAL Endcap	HCAL Forward	HCAL Outer	ECAL Barrel	ECAL Endcap	Preshower	Strips	Pixels
%Operational	97.55	5 98.6	5 98.4	99.4	99.96	99.88	96.88	99.11	98.89	96.9	9 97.6 1	L 95.9

2012 Data Certification

Delivered 14.4 fb⁻¹

- Recorded 13.6 fb⁻¹ (94.4%)
 - Certified
 - Golden 12.1 fb⁻¹ (84%)
 - Muon 12.8 fb⁻¹ (89%)

88-89% of data delivered is used for physics

2011 final numbers: Delivered 5.602 fb⁻¹

- Recorded 5.189 fb⁻¹ (93%)
- Certified
 - Golden 4.699 fb⁻¹ (84%)
 - Muon 4.965 fb⁻¹(89%)

. Incandela

e/γ Triggers in 2012
 ECAL transparency corrections implemented -> sharper turn-ons

• Jets: Added a 5 GeV jet seed threshold.

Greatly improves linearity, no loss in physics

J. Incandela

UCSB/CERN

HLT Performance

HLT μ efficiency increased in 2nd half of 2012 via introduction of pileup corrections for isolation

Tau trigger: changed quality criteria on isolation tracks • 60% improvement in H → ττ efficiency

lela UCSB/CERN

CMS publications

CMS publications

170 Collision data papers published or submitted40 now in final stages of preparation for submission

ΤΟΡ QCD SUS SMP/ EWK HIN HIG FSQ/ FWD B2G EXO BPH 10 30 40 50 0 20 60 Remaining (planned) pubs with 2011 data

Physics Group	Planned		
B2G	10		
BPH	19		
SMP	22		
EXO	1		
FWD/FSQ	15		
HIG	6		
HIN	3		
SUS	3		
ТОР	5		
	72		

Publications with 2012 data: planning underway

Some recent results

UCSB/CERN

J. Incandela

Top Highlights: Properties

1/0

0.4

0.05

-0.05

0.1

0.05

-0.05

3

14

 $m_{\rm t} = 173.36 \pm 0.38$ (stat.) ± 0.91 (syst.) GeV

Table 2 Correlation coefficients between the input measure
--

	Di-lepton	Lepton+jets	Di-lepton	Lepton+jets	All-jets
	2010	2010	2011	2011	2011
Di-lepton 2010	1.00				
Lepton+jets 2010	0.30	1.00			
Di-lepton 2011	0.35	0.67	1.00		
Lepton+jets 2011	0.26	0.44	0.64	1.00	
All-jets 2011	0.36	0.59	0.71	0.56	1.00

FCNC top decay limit: arXiv:1208.0957B(t \rightarrow Zq) < 0.24% @ 95% CL

 $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj) = 3.6 \pm 1.1(stat.) \pm 0.9(sys.)\%$

UCSB/CERN

Incandela

Electroweak Highlights

Electroweak Highlights

Final state channels	4 <i>e</i>	4μ	2e2µ	4ℓ
Irreducible background ($pp \rightarrow Z\gamma^* \rightarrow 4\ell$)	0.04	0.16	0.08	0.3 ± 0.03
Other reducible backgrounds	0.01	0.01	0.05	0.1 ± 0.13
Expected signal $(pp \rightarrow Z \rightarrow 4\ell)$	3.1	12.3	9.2	24.6 ± 2.2
Total expected (MC)	3.2	12.5	9.3	25.0 ± 2.2
Observed events	2	14	10	26
Rate from the fit of the observed mass distribution		13.6	9.7	25.4

 4ℓ

11.12

 $4.45 \cdot 10^{-6}$

- Standard candle •
 - $H \rightarrow ZZ \rightarrow 4I$
 - 10x more events
- Current statistics $\pm 0.5\%$ on m_{41} scale

Invariant mass of the two wide jets is 4.5 TeV •

Data recorded: Sat May 26 13:25:29 2012 CEST Run/Event: 195016 / 425646417 Lumi section: 384

UCSB/CERN

Exotica at √s=8TeV 20

ΞI

Higher \sqrt{s} translates directly into higher mass scales: Z', W', Black holes, ...

Z': M > 2.6 TeV W': M > 2.9 TeV BH: M > 5-6 TeV q*: M > 3.2 TeV

UCSB/CERN

J. Incandela

Use photon or jet ISR to tag production of DM particles

October 1, 2012

- Process very similar to that assumed in direct detection experiments
- Exceeds sensitivity of cryogenic searches for DM for spin-dependent DM couplings
- Adds sensitivity to light (M < 10 GeV) DM also for spin-independent couplings (where direct searches are most sensitive due to coherent scattering $\sim A^2$)

- Publication
 - No significant changes from 4th of July

New

- H →WW (Diff. Flavours)
 - Shape-based analysis
 - Stronger signal

Ш С

CSB/

CMS yy Mass Distribution

Sum of mass distributions for each event class, weighted by S/B

B is integral of background model over a constant signal fraction interval

25

Decay mode/combination	Expected (σ)	Observed (σ)
$\gamma\gamma$	2.8	4.1
ZZ	3.6	3.1
$\tau\tau$ + bb	2.4	0.4
$\gamma\gamma + ZZ$	4.7	5.0
$\gamma\gamma + ZZ + WW$	5.2	5.1
$\gamma\gamma + ZZ + WW + \tau\tau + bb$	5.8	5.0

5.0σ versus 5.8σ expected

Signal Strengths

 Best-fit signal strength to combined data

 $\frac{\sigma}{\sigma_{\rm SM}} = 0.87 \pm 0.23$

- Spin-parity
 - Spin one ruled out by 2γ decay
 - Assuming S=o, one can use
 H→ZZ to distinguish between parity states

Characterization of the excess: mass

- Likelihood scan for mass and signal strength in three high mass resolution channels
 - results are self-consistent and can be combined

To reduce model dependence, allow for free cross sections in three channels and fit for the common mass:

 $m = 125.3 \pm 0.4 (stat) \pm 0.5 (syst)$

LHC ultimate precision: < 100 MeV

UCSB/CERN

New H \rightarrow WW Shape-Based Analysis

- Discovery result was based on SF (ee, μμ) and DF (eμ) cut-based analysis
 - Understanding of the SF background dominated by DY+MET is very non-trivial in the presence of large PU
 - Moving away from SF in the future (sensitivity is marginal)
- The shape-based DF analysis will be the basis of future updates

UCSB/CERN

Some Projections

2011+2012 datasets

- Major part of the Higgs program with 2012 data is measurement of the couplings
 - 15% measurement of the signal strength is possible, which would allow for a confirmation of SM-like nature of the observed particle or, conversely, that it's not a SM Higgs

Higgs: Fermionic Channels

- Established only the bosonic channels thus far
 - Major focus now is the study of fermionic decays
 - Do they exist and are they consistent with the SM predictions?

Study of parity in H->ZZ*

pseudo MELA = $\left[1 + \frac{\mathcal{P}_{0^-}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{0^+}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$

- Matrix element (MELA)
 - for hypothesis discrimination
 - 3.1σ by the end of the run (expectation = 1.6σ for July 4th sample)
 - depends on assumed yield, ~4 σ with mean SM expectation
 - SM expectation is higher than observed significance in this channel in CMS
 - H->ZZ channel most promising for spin-o parity determination

UCSB/CERN

J. Incandela

- Follow-up simplified generator study
 - S.Bolognesi et al., arXiv:1208.4018
 - WW feature: angle between decay planes
 - γγ: production angle

scenario	$X \rightarrow ZZ$	$X \rightarrow WW$	$X \to \gamma \gamma$	combined
0_m^+ vs bkg	7.1	4.5	5.2	9.9
0_m^+ vs 0^-	4.1	1.1	0.0	4.2
0^+_m vs 2^+_m	1.6	2.5	2.5	3.9

spin-2, minimal, 35/fb spin-0, parity-odd, 35/fb

- Close to 4σ separation possible
 - for both odd parity and spin-2
 - more scenarios are open...

Upgraded Pixel Detector

- Less material, better radial distribution
- New ROC & extra layer recovers tracking efficiency (and lowers fake rate)
- Upgraded HCAL
 - Improve background rejection
 - Improve MET resolution
 - Improve Particle Flow via improved S/N from new photodetectors
 - Identify depth of shower max utilizing longitudinal segmentation and timing

Figure 3.1: Current proposed depth segmentation structure for the HB and HE calorimeters, made possible by the use of SiPM photodetectors.

UCSB/CERN

Improved Tracking & Btagging

- (Right) Improvement in b-tag performance w/ new pixel detector, in ttbar events, as a function of pileup
- (Below) Improvement in tracking efficiency (left) and tracking fake rate (right) w/ new pixel detector, in ttbar events, as a function of pileup

UCSB/CERN

Upgrade's Impact on Higgs Physics

 $H \rightarrow ZZ \rightarrow 4$

- Key channel
- Sensitive to lepton efficiency
- $H \rightarrow b\overline{b}, \tau\tau$
 - Crucial to establishing role in fermion masses
- $ZH \rightarrow \mu\mu b\overline{b}$ requires
 - High muon ID efficiency
 - High b-tagging efficiency
 - Good dijet mass resolution
 - $H \rightarrow \tau \tau$ (including VBF)
 - Improved
 - MET resolution
 - Forward jet tagging capability
 - Identification

Improved signal yield (relative to current detector): shaded regions indicate cuts with biggest gains expected

Improved m_{TT} resolution

better tracking & isolation

UCSB/CERN

J. Incandela

- CMS is running well
- Lot's of physics results and many more to come!
 - Full 2011+2012 data set should be interesting...
- Much more study planned
 - To understand potential for precision measurements of the new boson
- Lot's to do for LS1 and upgrades

J. Incandela