

Luca Scodellaro
Instituto de Fisica de Cantabria - CSIC
On behalf of the CMS Collaboration

2012 LHC Days in Split October 1st-6th, 2012 Split (Croatia)

Motivations

- Unique role in standard model of elementary particles:
 - Very large mass, Yukawa coupling to Higgs close to unity
 - Special role in electroweak symmetry breaking?
 - Sensitive to physics beyond the standard model?
- Precise measurements of top quark properties allow to test the standard model:
 - Top couplings, charge, width, decay branching ratios
- Important background to many physics signals
- Ideal event final states to test many reconstruction tools:
 - Jet energy scale, b-tagging, missing transverse energy

Top Physics at CMS

- Production properties:
- Top pair production:
 - <u>Inclusive cross sections</u>
 - <u>Differential cross sections</u>
 - Missing E_T, jet multiplicity
 - tt+X measurements
 - Alpha strong

- Spin correlation
- Top polarization
- Charge asymmetry

$$l^+, q$$
 $-v, \overline{q}$

- Top properties:
 - top mass
 - top-antitop ∆m
 - top charge
 - BR($t\rightarrow Wb$)
 - W polarization
 - Boson radiation

- Single top production:
 - t-channel production
 - tW associated production

- New physics in top sector:
 - Exotic top decays
 - <u>tt and tW resonances</u>
 - Heavy particles decaying to top
- Complete review of CMS results on top physics at:
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Top Quark Production and Decay

- Pair production dominant in pp collisions at LHC:
 - Gluon fusion: ~80%

Quark annihilation: ~20%

- Decay mainly to Wb via electroweak interaction:
 - BR(t->Wb) ~ 100% in SM
- Observed final states classified according to W bosons' decays:

Dilepton (~5%)

Lepton+jets (~30)

All hadronic (~46%) Tau+jets (~15%)

tt Event Reconstruction

- Most analyses need a full reconstruction of the tt event:
 - top mass and charge, angular distributions, production asymmetries
- Kinematic fit used to select/weight parton-jet assignments

$$\chi^2 = \sum_{i=\ell,4 \, \text{jet}} \underbrace{\frac{(p_T^{i, \text{fit}} - p_T^{i, \text{meas}})^2}{\sigma_i^2} + \sum_{j=x,y} \underbrace{\frac{(p_J^{\textit{UE}, \text{fit}} - p_J^{\textit{UE}, \text{meas}})^2}{\sigma_i^2}}_{\text{Allow momenta to fluctuate according to their resolution}$$

$$\frac{(M_{ij} - M_W)^2}{\Gamma_W^2} + \underbrace{\frac{(M_{\ell v} - M_W)^2}{\Gamma_W^2}}_{\text{Constrain on W masses}} + \underbrace{\frac{(M_{ij} - M_W)^2}{\Gamma_V^2}}_{\text{Constrain on to part of their resolution}}_{\text{Constrain on to part of their resolution}}$$

- Dilepton events underconstrained due to the presence of two undetected neutrinos:
 - Use expectation from theory to assign a probability to the solutions (kinematic distributions of the neutrinos, matrix elements)

tt Cross Sections

- Measurements at 7 TeV:
 - Dominated by the very precise dilepton channel (updated result)

- Measurements at 8 TeV:
 - Preliminary results in dilepton and lepton+jets channels

Exp. precision challenging the approx. NNLO QCD calculations

tt Cross Sections

- Cross section increase with energy agrees with predictions
- Ratio R = $\sigma(8\text{TeV})/\sigma(7\text{TeV})$: R = 1.41 \pm 0.10
 - Experimental uncertainties taken as uncorrelated (pessimistic scenario)
 - Theoretical uncertainties assumed to be 100% correlated

Differential tt Cross Sections

- Inclusive cross section precision matching theoretical uncertainty
- Differential cross sections test different QCD calculation schemes:
 - Unfolding distributions to parton level
 - Shape measurement: lot of systematic uncertainties cancel out in the normalization

Missing E_T in tt Events

- Test of the current models of top quark pair production
 - ttbar is a major background to many processes involving MET
 - Also sensitive to BSM production of MET with ttbar pairs
- Selecting t\u00e4 events in lepton+jets final states
 - Fit to lepton pseudorapidity in bin of missing E_T

Jet Multiplicity in tt Events

- Differential cross sections for dilepton final state events
 - Test of perturbative QCD calculations at higher order
- Probing higher order effects of different generators using different parameters and shower models

tt+Jets Events

- Gap fraction: fraction of events no containing additional jets
- Measured as a function of a threshold on:
 - Transverse momentum of the leading additional jet
 - Scalar sum of the transverse momentum of the additional jets

tībb Production

- Irreducible background for t̄tH → ttb̄b searches
 - Crucial for testing the Yukawa coupling of the new found boson

- Measuring the ratio $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$:
 - Lot of systematic uncertainties cancel
- Fit to the observed b-tag multiplicity in events with two leptons and four jets:
 - $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj) = 3.6\pm1.1(stat.)\pm0.9(syst.)\%$
 - NLO QCD: 4.7% (before detector effects)

α_s from tt Cross Section

TOP-12-022

High precision of $t\bar{t}$ cross section measurement allows to determine strong coupling constant $\alpha_s(M_7)$

Cross section dependence on α_s and m_t determined with Top++ and HATHOR₁₄₀
 and for different PDFs

 Likelihood function maximization for fixed top mass value (m_t = 173.2 GeV):

$$L(\alpha_s) = \int f_{\text{exp}}(\sigma_{t\bar{t}}|\alpha_s) f_{\text{th}}(\sigma_{t\bar{t}}|\alpha_s) d\sigma_{t\bar{t}}$$
Experimental (gaussian)

Convolution of PDF (gaussian) and ren./fact. scales (rectangular) terms

Add uncertainty varying m_t by ±1.4 GeV

Spin Correlation

TOP-12-004

Test of top pair production processes and perturbative QCD

$$A_{\text{hel.}} = \frac{N_{\text{like}} - N_{\text{unlike}}}{N_{\text{like}} + N_{\text{unlike}}} = \frac{N(\uparrow \uparrow) + N(\downarrow \downarrow) - N(\uparrow \downarrow) - N(\downarrow \uparrow)}{N(\uparrow \uparrow) + N(\downarrow \downarrow) - N(\uparrow \downarrow) - N(\downarrow \uparrow)}$$

Fitting lepton azimuthal difference in dilepton final states:

$$A_{hel.}^{meas.}$$
 = 0.24 ± 0.02 (stat.) ± 0.08 (syst.) ($A_{hel.}^{th.}$ = 0.31, ±~1%)

October 2nd, 2012 Luca Scodellaro, IFCA 14

Top Polarization

TOP-12-016

Top polarization $P_{\hat{n}}$ reflected by kinematic form distributions of its decay products:

Angle A between lepton direction in top

• Angle $\theta_{\hat{n},l}$ between lepton direction in top rest frame and top direction \hat{\hat{n}} in t\bar{t} CM frame

Fitting the unfolded $\theta_{l,\hat{n}}$ distributions observed in dilepton final states

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{l,\hat{n}}} = \frac{1}{2} (1 + 2k_l P_{\hat{n}} \cos\theta_{l,\hat{n}})$$

 $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{l,\hat{n}}} = \frac{1}{2} (1 + 2k_l P_{\hat{n}} \cos\theta_{l,\hat{n}})$ Measured $P_{\hat{n}}$ consistent with parton-level prediction from simulations:

$$P_{\hat{n}} = -0.009 \pm 0.029 \text{ (stat.)} \pm 0.041 \text{ (syst.)}$$

Top Mass Measurement

- Updated results in the lepton+jets and dilepton channels
- Lepton+jets channel (5fb⁻¹): TOP-11-015
 - 2D ideogram method with in situ JES calib.
 - Most precise single top mass measurement

$$m_t = 173.5 \pm 0.4 \text{ (stat.+JES)} \pm 1.0 \text{ (syst.)} \text{ GeV}$$

- Dilepton channel (5fb⁻¹):
 - Neutrino momenta computed analytically 🚊
 - Solutions weighted by LO matrix element

 $m_t = 172.5 \pm 0.4 \text{ (stat.)} \pm 1.5 \text{ (syst.)} \text{ GeV}$

Top Mass Measurement

- Results exploiting new techniques or decay channels
- Dilepton channel (5fb⁻¹):

- Kinematic endpoint method
- Technique developed in BSM searches

$$m_t = 173.9 \pm 0.9 \text{ (stat.)}^{+1.2}_{-1.8} \text{ (syst.)} \text{ GeV}$$

- All hadronic channel (3.5fb⁻¹): TOP-11-017
 - Similar approach as in lepton+jets channel
 - Result with no in situ JES calibration

$$m_t = 173.5 \pm 0.7 \text{ (stat.)} \pm 1.3 \text{ (syst.)} \text{ GeV}$$

Top Mass Measurement

- CMS top mass measurement reached the precision obtained at the Tevatron
- Many ideas to reduce systematics:
 - JES calibrations in situ, b-specific JES
 - ISR/FSR from tt+jets cross sections
 - Constrain theoretical models on data (Color recon., underlying event, PDFs)
 - With large statistics, use well understood regions of phase-space
 - Combine alternative methods with complementary systematics

tt+V (V=W/Z) Production

- Top coupling to weak vector bosons not yet directly measured
- Two independent analyses in lepton+jets tt̄ final states:
 - Trilepton search: designed to select only tt+Z events
 - Same sign dilepton search: sensitive to both tt+Z/W production
- Measured cross sections compatible with NLO calculations

Single Top Production

- Test of top EWK coupling, measurement of |V_{tb}|
- Probe for PDFs for b-quarks
- Sensitive to new physics:
 - Anomalous W_{tb} couplings, W' or H⁺, FCNC production, 4th generation

Kidonakis, approx. NNLO, arXiv:1205.3453v1 (2012)

pp energy	σ(t-channel)	σ(s-channel)	σ(Wt-channel)
7 TeV	65.9 ^{+2.6} _{-1.8} pb	4.6 ± 0.2 pb	15.6 ^{+0.5} _{-0.6} pb
8 TeV	87.2 ^{+3.4} _{-2.4} pb	5.6 ± 0.2 pb	22.2 ± 0.8 pb

Single Top in the t-Channel

- Cross section measurement at 7 TeV:
 - Two approaches in lepton+jets events:
 - Top mass and light jet recoil (|η'|)
 - Multivariate discriminators
 - Combined results:
 - $-\sigma = 67\pm4(stat.)\pm3(syst.)\pm4(th.)\pm2(lum.)pb$
 - $-V_{tb} = 1.02 \pm 0.05$ (exp.) ± 0.02 (th.)
 - 0.92<V_{tb}<1 @95% CL
- Cross section measurement at 8 TeV: \(\frac{1}{2} \)
 - Only $|\eta'|$ analysis in μ +jets events:
 - $-\sigma = 80 \pm 6 \text{ (stat.)} \pm 11 \text{ (syst.)} \pm 4 \text{ (lum.)pb}$
 - R(8TeV/7TeV) = $1.14\pm0.12(stat.)\pm0.14(syst.)^{10}$
 - $-V_{tb} = 0.96 \pm 0.08$ (exp.) ± 0.02 (th.)
 - $0.81 < V_{tb} < 1 @95\% CL$

tW Associated Production

- Search for tW associated production in 7 TeV pp collision
 - Decay channel $tW \rightarrow (bW)W \rightarrow (blv)(lv)$
- Binned likelihood fit to BDT output in signal and control regions
 - Excess observed: $\sigma = 16^{+5}_{-4}$ pb (4 σ significance)
 - $V_{tb} = 1.01^{+0.16}_{-0.13} \text{ (exp.)}^{+0.03}_{-0.04} \text{ (th.)}$ (0.79< V_{tb} <1 @90% CL)

New Physics in Top Quark Decays

TOP-11-028

B2G-12-002

- Search for FCNC top decays into a Z boson, t→Zq:
 - $t\bar{t} \rightarrow (Wb)(Zq) \rightarrow (blv)(qll)$: three leptons in the final states
 - BR(t→Zq)<0.24% @95% CL

- Search for baryon number violating top decays:
 - tt̄ (Wb)(bql)→(bqq)(bql): one charged lepton, no neutrinos
 - BR(t→bql)<0.67% @95% CL

New Physics in Top Production

TOP-12-017

EXO-12-001

- Search for tt resonances:
 - M_{tt} in lepton+jets events
 - Lower limits (95% CL):
 - Topcolor Z': M_{7'}>1.49 TeV
 - KK excited g: $M_{g*}>1.82$ TeV

- W' boson decaying to tb:
 - W'→tb→Wbb→lvbb
 - Assuming SM couplings:
 - Right-handed W':M_{w'}>1.85 TeV
 - M_{w'} contours in (a^L,a^R) plane

New Physics in Top Production

B2G-12-004

B2G-12-003

- Heavy quark decaying to tV:
 - QQ→ttVV→lv+≥4jets
 - No excess over SM observed:
 - M(Q→tW)>675 GeV @95% CL
 - M(Q→tZ)>625 GeV @95% CL

- Heavy top quark partner, Q=5/3:
 - Same sign dilepton + \geq 4 jets from $T_{5/3}T_{5/3} \rightarrow (tW)(tW) \rightarrow (blvlv)(bqqqq)$:
 - M(T_{5/3})>645 GeV @95% CL

Conclusions

- CMS is investigating top production and properties in pp collisions at center-of-mass energies of 7 and 8 TeV
- High precision measurements on inclusive and differential cross section challenge theoretical models, and can be used to validate their predictions and constrain their parameters
- Measurements of many top properties test the validity of the standard model
- Direct searches for new phenomena constrain the scenarios for beyond standard model physics
- Expect new results with improved precision and reach from 2012 data

Back Up Material

Charge Asymmetry

TOP-11-030

- Charge asymmetry in tt̄ pair production:
 - Sensitive to BSM top production
 - In pp collisions, antitop expected to be produced more centrally
- CMS measurements compatible with SM predictions:

$$A_c^y = (N_p - N_N)/(N_p + N_N), N_p = N(|y_t| - |y_{\bar{t}}| > 0), N_N = N(|y_t| - |y_{\bar{t}}| < 0)$$

 $A_c^y = 0.004 \pm 0.010 \text{ (stat.)} \pm 0.012 \text{ (syst.)}, A_c^{th} = 0.0115 \pm 0.0006$

October 2nd, 2012 Luca Scodellaro, IFCA 28

Top Mass from Cross Section

- Exploit strong dependence of top pair cross section on top mass
 - Using cross section measurement from dilepton channel (1.14 fb⁻¹)
- Well defined renormalization scheme:
 - Test of the mass scheme as applied in the MC simulations

Approx. NNLO × MSTW08NNLO	$m_t^{\rm pole}$ / GeV	$m_t^{\overline{ ext{MS}}}$ / GeV
Langenfeld et al. [7]	$170.3^{+7.3}_{-6.7}$	$163.1^{+6.8}_{-6.1}$
Kidonakis [8]	$170.0^{+7.6}_{-7.1}$	_
Ahrens et al. [9]	$167.6^{+7.6}_{-7.1}$	$159.8^{+7.3}_{-6.8}$

Approx. NNLO × HERAPDF15NNLO	$m_t^{\rm pole}$ / GeV	$m_t^{\overline{ ext{MS}}}$ / GeV
Langenfeld et al. [7]	$171.7^{+6.8}_{-6.0}$	$164.3^{+6.5}_{-5.7}$
Ahrens et al. [9]	$169.1^{+6.7}_{-5.9}$	$161.0^{+6.8}_{-6.1}$

Top-Antitop Mass Difference

- If CPT is conserved, particle and antiparticle must have same mass
 - The top quark is the only one with which we can test this directly
- CMS: reconstruct t (t) mass in had. decay in l⁻(l⁺)+jets events:

$$\Delta m_t = -0.44 \pm 0.46$$
 (stat.) ± 0.27 (syst.) GeV

Top Quark Charge

TOP-11-031

- Constraints on top charge:
 - Top charge reconstructed from the charge of the decay products:
 - W: same charge of muon from $W^{\pm} \rightarrow \mu^{\pm} \nu$ decay
 - b: flavor from charge of muon in semileptonic decay
- q=+2/3 vs $q_t=-4/3$ hypotheses:
 - Good agreement with SM

October 2nd, 2012 Luca Scodellaro, IFCA 31

W Boson Polarization

TOP-11-020

W boson polarization tests V-A coupling in top decays:

 W_0 longitudinal: $F_0 = 0.7$ W_1 left-handed: $F_2 = 0.3$

 W_{+} right-handed: $F_{+} \approx 0.0$

CMS measured the W helicity fractions in the I+jets channel:

- $F_0 = 0.57 \pm 0.07 \pm 0.05$
- $F_{-} = 0.39 \pm 0.04 \pm 0.03$
- $F_{+} = 0.04 \pm 0.04 \pm 0.04$

October 2nd, 2012 Luca Scodellaro, IFCA 32

Top Quark Decay

- Measurement of decay ratio R=BR(t→Wb)/BR(t→Wq):
 - Fit to b-tag multiplicity in tt dilepton decays
 - R=0.98±0.04, R>0.85 @95% CL

