TOTEM Results and Perspectives

The TOTEM Collaboration

INFN Sezione di Bari and Politecnico di Bari, Bari, Italy
MTA KFKI RMKI, Budapest, Hungary
Case Western Reserve University, Cleveland, Ohio, USA
CERN, Geneva, Switzerland
Estonian Academy of Sciences, Tallinn, Estonia
Università di Genova and Sezione INFN, Genova, Italy
Università di Siena and Sezione INFN-Pisa, Italy
University of Helsinki and HIP, Helsinki, Finland
Academy of Sciences, Praha, Czech Republic

Elastic scattering
Total Cross-section
Inelastic cross-section
Particle Production
Diffraction
Runs with CMS
Future runs
Perspectives after the shut-down

Karsten Eggert (CWRU)
on behalf of the TOTEM collaboration

2012 LHC Days in Split, Croatia
TOTEM Physics Overview

Total cross-section

Elastic Scattering

Cosmic Ray Physics

Diffraction: soft and hard
TOTEM Detectors (T1, T2 and RP) on both sides of IP5

24 Roman Pots in the LHC tunnel on both sides of IP5
measure elastic & diffractive protons close to outgoing beam

Inelastic telescopes T1 and T2:
T1: $3.1 < \eta < 4.7$
T2: $5.3 < \eta < 6.5$
Detectors

RP 147

Vertical Pot
Horizontal Pots
Vertical Pot
Vertical Pot

Package of 10 “edgeless” Si-detectors

T1 (CSCs)

T2 (GEMs)
The Roman Pot System at 220 m

Design considerations:
Two independent detection systems with 5 m lever arm scenarios
10 Silicon detectors / RP
Reliable track reconstruction in both projections
Determine the proton angle in both projections
Approach the beam as close as possible to

Space for adding detectors for future upgrades !!!

(x*, y*): vertex position
(θx*, θy*): emission angle: \(t \approx -p^2 (\theta_x^* + \theta_y^*) \)
ξ = Δp/p: momentum loss (diffraction)

Optimized optics

Beam width @ vertex	Angular beam divergence	Min. reachable	t			
Standard optics β* ~ 1 m	σx,y* small	σ(θx,y*) large		t	min	~ 0.3–1 GeV²
Special optics β* = 90 m	σx,y* large	σ(θx,y*) small		t	min	< 10⁻² GeV²
Proton position at a given RP \((x, y)\) is a function of position \((x^*, y^*)\) and angle \((\Theta^*_x, \Theta^*_y)\) at IP5:

\[
\begin{pmatrix}
x \\
\Theta_x \\
y \\
\Theta_y \\
\Delta p/p \end{pmatrix}_{RP} = \begin{pmatrix}
v_x & L_x & 0 & 0 & D_x \\
v'_x & L'_x & 0 & 0 & D'_x \\
0 & 0 & v_y & L_y & 0 \\
0 & 0 & v'_y & L'_y & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
x^* \\
\Theta^*_x \\
y^* \\
\Theta^*_y \\
\Delta p/p \end{pmatrix}_{IP5}
\]

Proton transport matrix

The effective length and magnification expressed with the phase advance:

\[
L(s) = \sqrt{\beta(s)\beta^*} \sin \Delta \mu(s) \quad v(s) = \sqrt{\beta(s)\beta^{-1}} \cos \Delta \mu(s) \quad \Delta \mu(s) = \int_0^s \beta^{-1}(s') ds'
\]

Elastic proton kinematics reconstruction (simplified):

\[
\begin{align*}
\Theta^*_x &= \left(\Theta_{x,RP} - \frac{dv_x}{ds} x^* \right) \int \frac{dL_x}{ds} , & \frac{\Delta p}{p} = 0 \\
\Theta^*_y &= \left(y_{RP} - v_y y^* \right) / L_y
\end{align*}
\]

Scattering angle reconstructed in both projections

Excellent optics understanding required
Beam-Based Roman Pot Alignment (Scraping)

A primary collimator cuts a sharp edge into the beam, symmetrical to the centre.

The top RP approaches the beam until it touches the edge.

The last 10 μm step produces a spike in a Beam Loss Monitor downstream of the RP.

When both top and bottom pots are touching the beam edge:

- they are at the same number of sigmas from the beam centre as the collimator
- the beam centre is exactly in the middle between top and bottom pot

→ Alignment of the RPs relative to the beam

The RP – beam contacts are also registered as spikes in the trigger rate.

alignment is very critical and fundamental for any physics reconstruction

alignment between pots with overlapping tracks (~ few μm)

fine alignment wrt beam using elastic events
Elastic pp scattering: topology (hit map in RP detectors)

Two diagonals analysed independently

\[t = -p^2 \theta^2 \]

\[\xi = \Delta p/p \]
Elastic Scattering: Collinearity

Collinearity in θ_y^\ast

Missing acceptance in θ_y^\ast

Width in agreement with beam divergence of 17 μrad

Collinearity in θ_x^\ast

Low ζ, i.e. $|x| < 0.4$ mm and 2σ cut in $\Delta\theta_y^\ast$

Θ_x is measured with 5m lever arm spectrometer
Elastic pp scattering: analysis

Collinearity cut (left-right)

\[q^*_{x,45} \leftrightarrow q^*_{x,56} \]

\[q^*_{y,45} \leftrightarrow q^*_{y,56} \]

Background subtraction

Acceptance correction
First measurement of the elastic pp differential cross-section

2011 with $\beta^* = 3.5$ m

First published data in 2011
EPL 95 (2011) 41001
EPL 96 (2011) 21002
Comparison to some models

None of the models really fit

Better statistics at large t needed (in progress)
Elastic pp Scattering at 7 TeV: Differential Cross-Section

t range : 7×10^{-3} GeV$^2 < |t| < 3.5$ GeV2

\[d\sigma_{el}/dt = A e^{-B|t|} \]

\[|t|_{\text{min}} = 2 \cdot 10^{-2} \text{ GeV}^2 \]

\[|t|_{\text{min}} = 5 \cdot 10^{-3} \text{ GeV}^2 \]

\[|t|_{\text{dip}} = 0.53 \text{ GeV}^2 \]

\[B = 19.9 \pm 0.26^{\text{syst}} \pm 0.04^{\text{stat}} \text{ GeV}^{-2} \]

\[A = 506 \pm 22.7^{\text{syst}} \pm 1.0^{\text{stat}} \text{ mb/GeV}^2 \]

\[503 \pm 26.7^{\text{syst}} \pm 1.5^{\text{stat}} \text{ mb/GeV}^2 \]

Additional data set under analysis:

$2 \text{ GeV}^2 < |t| < 3.5$ GeV2

Integrated elastic cross-section:

$25.4 \pm 1.0^{lumi} \pm 0.3^{syst} \pm 0.03^{stat} \text{ mb (90\% measured)}$

$24.8 \pm 1.0^{lumi} \pm 0.2^{syst} \pm 0.2^{stat} \text{ mb (50\% measured)}$
Low t - distribution

Constant slope for $0.007 < t < 0.2 \text{ GeV}^2$

Individual errors
Slope parameter B and elastic cross-section

B constant in the range $0.007 < t < 0.2 \text{ GeV}^2$

B increases with energy

$\sigma_{el} / \sigma_{tot}$ increases with energy
Elastic scattering – from ISR to Tevatron

PROTON-PROTON ELASTIC SCATTERING

- **Diffractive minimum**: analogous to Fraunhofer diffraction: \(|t| \sim p^2 \theta^2\)

- exponential slope B at low |t| increases
- minimum moves to lower |t| with increasing s → interaction region grows (as also seen from \(\sigma_{\text{tot}}\))
- depth of minimum changes → shape of proton profile changes
- depth of minimum differs between pp, p\(^-\)p → different mix of processes
Elastic Scattering and Total Cross-Section at 8 TeV

July 2012: runs at $\beta^* = 90$ m

| dataset | date | bunches | $|t|_{\text{min}}$ (GeV2) | \mathcal{L} (mb$^{-1}$) |
|---------|--------------------|---------|-----------------------------|--------------------------|
| 1 | 7 July, 1st fill | 1 | $4 \cdot 10^{-3}$ | -- |
| 2 | 7 July, 2nd fill | 1 | $7 \cdot 10^{-3}$ | ≈ 40 |
| 3a | 12–13 July | 1 | $15 \cdot 10^{-3}$ | ≈ 30 |
| 3b | 12–13 July | 2 or 3 | $15 \cdot 10^{-3}$ | ≈ 820 |

only RP alignment, RPs moving

collinearity, low ξ, common vertex

<table>
<thead>
<tr>
<th>cut</th>
<th>quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagonal</td>
<td>4 RP hits</td>
</tr>
<tr>
<td>1</td>
<td>$\theta^_x$ vs. $\theta^_x^L$</td>
</tr>
<tr>
<td>2</td>
<td>$\theta^_y$ vs. $\theta^_y^L$</td>
</tr>
<tr>
<td>3</td>
<td>$</td>
</tr>
<tr>
<td>4</td>
<td>$</td>
</tr>
<tr>
<td>5</td>
<td>θ^*y vs. $y{R,F} - y_{R,N}$</td>
</tr>
<tr>
<td>6</td>
<td>θ^*y vs. $y{L,F} - y_{L,N}$</td>
</tr>
<tr>
<td>7</td>
<td>$x^_R$ vs. $x^_L$</td>
</tr>
</tbody>
</table>
Elastic Scattering and Total Cross-Section at 8 TeV

July 2012: runs at $\beta^* = 90$ m

| dataset | date | bunches | RPs | $|t|_{\text{min}}$ (GeV2) | \mathcal{L} (mb$^{-1}$) |
|---------|----------------|---------|-----|-----------------------------|-------------------------|
| 1 | 7 July, 1st fill | 1 | 3σ | $4 \cdot 10^{-3}$ | -- |
| 2 | 7 July, 2nd fill | 1 | 6σ | $7 \cdot 10^{-3}$ | ≈ 40 |
| 3a | 12–13 July | 1 | 9.5σ | $15 \cdot 10^{-3}$ | ≈ 30 |
| 3b | 12–13 July | 2 or 3 | 9.5σ | $15 \cdot 10^{-3}$ | ≈ 820 |

only RP alignment, RPs moving

Preliminary t-distributions (unnormalised)

down to $|t| \sim 6 \times 10^{-4}$: foreseen at $\beta^* = 1$ km

larger $|t|$:
- possible at $\beta^* = 0.6$m
- difficult due to 2xSD and other background
Total Inelastic Cross Section Measurement at $\sqrt{s} = 7$ TeV

1. based only on elastic scattering via optical theorem
2. based on the measurement of the inelastic cross-section using charged particle detectors

Inelastic cross-section is measured with two different detectors and triggers

via elastic scattering with RP detectors
via inelastic detectors

All TOTEM detectors are used
Direct measurement of the Inelastic Cross-Section at $\sqrt{s}=7$ TeV

$T1: \, 3.1 < \eta < 4.7$

$T2: \, 5.3 < \eta < 6.5$
Inelastic Cross-Section visible in T2

Inelastic events in T2: classification

- tracks in both hemispheres
 - non-diffractive minimum bias
 - double diffraction

- tracks in a single hemisphere
 - mainly single diffraction

$M_X > 3.4\text{ GeV/c}^2$

Corrections to the T2 visible events

- Trigger Efficiency: 2.3 %
 (measured from zero bias data with respect to track multiplicity)

- Track reconstruction efficiency: 1%
 (based on MC tuned with data)

- Beam-gas background: 0.54%
 (measured with non colliding bunch data)

- Pile-up ($\mu = 0.03$): 1.5%
 (contribution measured from zero bias data)

$\sigma_{\text{inelastic, T2 visible}} = 69.7 \pm 0.1\text{ (stat)} \pm 0.7\text{ (syst)} \pm 2.8\text{ (lumi)}\text{ mb}$
Inelastic Cross-Section

\[\sigma_{\text{inelastic}, \text{T2 visible}} \rightarrow \sigma_{\text{inelastic}} \]

Missing inelastic cross-section

- Events visible in T1 but not in T2: 2.0 %
 \textit{(estimated from zero bias data)}
- Rapidity gap in T2: 0.57 %
 \textit{(estimated from T1 gap probability transferred to T2)}
- Central Diffraction: T1 & T2 empty: 0.54%
 \textit{(based on MC, correction max \(\sim 0.25 \times \sigma_{\text{CD}} \), quoted in systematic error)}
- Low Mass Diffraction: 3.7% ± 2% (syst)
 \textit{(Several models studied, correction based on QGSJET-II-4, imposing observed 2hemisphere/1hemisphere event ratio and the effect of ‘secondaries’)}

\textbf{Possibility of measuring low mass diffraction with a single proton trigger needs clean beam conditions to avoid beam halo background}

\[\sigma_{\text{inelastic}} = 73.7 \pm 0.1^{\text{(stat)}} \pm 1.7^{\text{(syst)}} \pm 2.9^{\text{(lumi)}} \text{ mb} \]
Inelastic Cross Section: low mass diffraction

By comparison with the measured inelastic cross-section (using the total cross-section), the low mass single diffraction can be determined:

\[\sigma_{\text{tot}} - \sigma_{\text{el}} = 73.2 \pm 1.3 \text{ mb} \]

\[\sigma_{Mx < 3.4 \text{ GeV}} = 2.2 \pm xx \text{ mb (preliminary)} \]

Possibility of measuring low mass diffraction with a single proton trigger needs clean beam conditions to avoid beam halo background
3 Ways to the Total Cross-Section

elastic observables only:

\[\sigma_{\text{tot}}^2 = \frac{16\pi}{1 + \varrho^2} \frac{1}{\mathcal{L}} \frac{dN_{\text{el}}}{dt} \bigg|_0 \]

(p=0.14 [COMPETE])

June 2011 (EPL96): \(\sigma_{\text{tot}} = (98.3 \pm 2.8) \text{ mb} \)

Oct. 2011 (PH pre.): \(\sigma_{\text{tot}} = (98.6 \pm 2.2) \text{ mb} \)

- Different bunch intensities!

\(\varrho \) independent:

\[\sigma_{\text{tot}} = \frac{1}{\mathcal{L}} (N_{\text{el}} + N_{\text{inel}}) \]

\(\sigma_{\text{tot}} = (99.1 \pm 4.3) \text{ mb} \)

luminosity independent:

\[\sigma_{\text{tot}} = \frac{16\pi}{1 + \varrho^2} \frac{dN_{\text{el}}/dt}{N_{\text{el}} + N_{\text{inel}}} \bigg|_0 \]

\(\sigma_{\text{tot}} = (98.0 \pm 2.5) \text{ mb} \)

Excellent agreement between cross-section measurements at 7 TeV using
- runs with different bunch intensities,
- different methods.
Cross-sections with different methods

\[\sigma_{\text{tot}}(\text{red}), \sigma_{\text{inel}}(\text{blue}) \text{ and } \sigma_{\text{el}}(\text{green}) \]

- \(\ddot{p}p \) (PDG)
- \(pp \) (PDG)
- Auger + Glauber
- TOTEM (\(\mathcal{L} \) indep.)
- ATLAS
- CMS

\(\sigma_{\text{tot}} \) fits:

- best COMPETE \(\sigma_{\text{tot}} \) fits

\(\rho = 0.141 \pm 0.007 \)
done before TOTEM measurement
Luminosity determination and ratios

Luminosity calibration:

\[L = \frac{(1 + \rho^2)(N_{el} + N_{inel})^2}{16\pi (dN_{el}/dt)_{t=0}} \]

1) \(L = 82/\mu b \pm 4\% \) \(L = 83.7/\mu b \pm 3.8\% \)

2) \(L = 1.65/\mu b \pm 4\% \) \(L = 1.65/\mu b \pm 4.5\% \)

Luminosity and \(\rho \) independent ratios:

\[\frac{\sigma_{el}}{\sigma_{tot}} = 0.257 \pm 2\% \]
\[\frac{\sigma_{el}}{\sigma_{inel}} = 0.354 \pm 2.6\% \]

Summary:

The cross-section measurements are in excellent agreement using:
runs with different bunch luminosities
different methods
A First, Very Crude ρ Estimate at 7 TeV

$$\rho = \frac{\text{Re} T(t=0)}{\text{Im} T(t=0)}$$

From optical theorem:

$$\rho^2 = 16\pi \mathcal{L}_{\text{int}} \left. \frac{dN_{\text{el}}}{dt} \right|_{t=0} \frac{1}{(N_{\text{el}} + N_{\text{inel}})^2} - 1 = 0.009 \pm 0.056$$

$\rho < 0.32$ (95% CL),
or, using Bayes’ approach (with uniform prior $|\rho|$ distribution):

$|\rho| = 0.145 \pm 0.091$ [COMPETE extrapolation: $\rho = 0.141 \pm 0.007$]

Not so exciting, but …
\[\sigma_{\text{tot}} = \frac{4\pi}{s} \Im \left(T_{\text{elastic,nuclear}}(t = 0) \right) \]

\[\frac{d\sigma}{dt} = \frac{4\pi\alpha^2 \left(\hbar c \right)^2 G^4(t)}{|t|^2} + \frac{\alpha(\rho - \alpha\phi)\sigma_{\text{tot}} G^2(t) e^{-B|t|/2}}{|t|} + \frac{\sigma_{\text{tot}}^2 \left(1 + \rho^2 \right) e^{-B|t|}}{16\pi \left(\hbar c \right)^2} \]

\(\alpha \) = fine structure constant
\(\phi \) = relative Coulomb-nuclear phase
\(G(t) \) = nucleon el.-mag. form factor = \((1 + |t| / 0.71)^{-2} \)
\(\rho \) = \(\Re / \Im [T_{\text{elastic,nuclear}}(t = 0)] \)

Measurement of \(\rho \) by studying the Coulomb – Nuclear interference region down to
\[|t| \sim 6 \times 10^{-4} \text{ GeV}^2 \]

Reachable with \(\beta^* \sim 1000 \text{ m} \) still in 2012 if RPs can approach beam centre to \(\sim 4\sigma \)
How to reach the Coulomb-Nuclear Interference Region?

$\sqrt{s} = 8 \text{ TeV}$

$\sqrt{s} = 13 \text{ TeV}$

RP window position (real σ for $\epsilon_n = 2 \mu m$ rad)

Coulomb = nuclear

$\epsilon_n = 2 \mu m$ rad

$\epsilon_n = 1 \mu m$ rad

RP approach the beam to $\sim 4 \sigma$

Beam emittance $\epsilon_n < 2 \mu m$ rad

\Rightarrow Challenging but possible

push β^* to > 2000 m

good t-resolution needs parallel-to-point focussing in both x and y (phase advance $\pi/2$)

Additional magnet cables needed. To be installed during LS1
The $\beta^* = 1000$ m Optics

MD in June: first unsqueeze to 1km achieved

14 September:

- special beam optics with $\beta^* = 1000$ m fully commissioned
- collisions in IP1 and IP5 found
- vertical emittances $\varepsilon_n \sim 2 \mu$m rad
- 4 vertical TOTEM RPs (out of 8) aligned at $\sim 4 \sigma$
- time slot ended \Rightarrow no physics data taken yet, diagnostic data on halo background being analysed

Physics run scheduled for October 2012
β* = 90m optics runs:
- DPE protons of \(-t > 0.02\text{GeV}^2\) detected by RP
- nearly complete \(\xi\)-acceptance

σ_{DPE} measurement method:

\[
\frac{d^2\sigma_{DPE}}{dt_1 dt_2} = C(\Delta \varphi_{1,2}) e^{-B_{t_1}} e^{-B_{t_2}}
\]

\[
\sigma_{DPE} = \int_0^\infty dt_1 \int_0^\infty dt_2 \frac{d^2\sigma_{DPE}}{dt_1 dt_2}
\]
Correlation between the forward proton(s) and particles in T2

sector 45 IP sector 56
RP T2 T2 RP

run: 37220007, event: 9904

DP

run: 37280004, event: 22784

SD (low ξ)
Single diffraction large ξ

Rapidity Gap

$\Delta \eta = -\ln \xi$

$M_x^2 = \xi s$

sector 45 IP sector 56

φ

η

run: 37280006, event: 6074
Diffractive Analyses Ongoing

Based on $\beta^* = 90$ m (7 TeV) run in Oct. 2011 (RP @ 4.8σ – 6.5σ):

- **Central Diffraction**

 \[\frac{d^2\sigma_{DPE}}{dt_1 dt_2} , \sigma_{DPE} \]

- **Single Diffraction**

 \[d\sigma_{SD}/dt , d\sigma_{SD}/d\xi , \sigma_{SD} \]

- **Double Diffraction**

 Select diff. masses 3.4 GeV < M < 10 GeV
 requiring tracks in both T2s, veto on T1s

→ Extend studies over full η range with CMS (2012 data)
Analyses in progress:

- T1 measurement at 7 TeV (3.1 < |η| < 4.7)
- **NEW**: combined analysis CMS + TOTEM (0 < |η| < 6.5) on low-pileup run of 1st May 2012 (8 TeV): common trigger (T2, bunch crossings), both experiments read out

- **NEW**: parasitical collision at $\beta^* = 90$ m (7 July 2012) → vertex at ~11m → shifted η acceptance:
Joint Data Taking with CMS

Realisation of common running much earlier than ever anticipated

1. **Hardware**: electrical from RP220 to CMS \rightarrow trigger within CMS latency
2. **Trigger**: bi-directional level-1 exchange \rightarrow same events taken
3. **Synchronisation**: orbit number and bunch number in data streams
4. **Offline**:
 - common repository for independently reconstructed data
 - merging procedure \rightarrow common n-tuples
Joint Data Taking with CMS

May 2012: low pileup run: $\beta^* = 0.6 \text{ m}$, $\sqrt{s} = 8 \text{ TeV}$, T1 & T2 & CMS read out

<table>
<thead>
<tr>
<th>Date</th>
<th>Trigger</th>
<th>Inelastic events</th>
<th>RP position</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 1</td>
<td>T2</td>
<td></td>
<td>BX</td>
</tr>
</tbody>
</table>

July 2012: $\beta^* = 90 \text{ m}$, $\sqrt{s} = 8 \text{ TeV}$, RP & T1 & T2 & CMS read out

<table>
<thead>
<tr>
<th>Date, Set</th>
<th>Trigger</th>
<th>Inelastic events</th>
<th>RP position</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 7, DS 2</td>
<td>T2</td>
<td></td>
<td>RP_{2arms}</td>
</tr>
<tr>
<td>July 12-13, DS 3a</td>
<td>T2</td>
<td></td>
<td>RP_{2arms}</td>
</tr>
<tr>
<td>July 12-13, DS 3b</td>
<td>T2</td>
<td></td>
<td>RP_{2arms}</td>
</tr>
</tbody>
</table>

Abundant material for analysis activities throughout LS1

Analyses starting:
- hard diffraction: $p + \text{dijets}$ (90m runs)
- combined $dN_{\text{ch}} / d\eta$ and multiplicity correlations
Runs Planned for 2012 / 2013

- $\beta^* = 1000 \text{ m}$: scheduled for 24 October
 → study interference region, measure ρ

- RP insertions in normal physics runs ($\beta^* = 0.6 \text{ m}$)
 - hard diffraction together with CMS (high diffractive masses reachable)
 - study of closest possible approach of the horizontal RPs (i.e. acceptable beam losses)
 → essential for all near-beam detector programmes at high luminosity after LS1
 Collimators needed behind the RP to protect quadrupoles

- request a low-pileup run ($\mu \sim 5\%$) with RPs at $\beta^* = 0.6 \text{ m}$ (in May RPs were not aligned)
 → study soft central diffraction final states
 with 2 leading protons defining Pomeron-Pomeron mass $M^2 = \xi_1 \xi_2 s$
 good ξ resolution at $\beta^* = 0.6 \text{ m}$ → $\sigma(M) \sim 5 \text{ GeV}$

- participation in the p-Pb runs with insertions of the RPs on the proton side
 → study diffractive/electromagnetic and quasi-elastic p-Pb scattering
 p-Pb test run in September with CMS was successful (T2 trigger given to CMS)
To be done this year

Together with CMS studies on:
- Rapidity distribution over the full acceptance range
- Diffractive di-jets
- Double Pomeron Exchange
- Single Diffraction
- Double Diffraction
- Elastic scattering and cross-sections at $\sqrt{s} = 8$ TeV
- Measurement of ρ with $\beta^*=1000$ m
- Preparation for Diffractive Di-jet production at highest luminosities in view of the new forward set-up after LS1

p-A data taking in 2013
Finalize the three papers in the pipe-line
The End