

Diboson Physics in CMS

- Ian Ross, University of Wisconsin-Madison on behalf of CMS
- LHC Days in Split

- Introduction
- Results
 - WW cross section (7 and 8 TeV)
 - WW/WZ in dijets (7 TeV)
 - Anomalous triple gauge coupling (aTGC) limits
 - WZ cross section (7 TeV)
 - Z→4l branching ratio (7 TeV)
 - ZZ
 - Cross section (7 and 8 TeV)
 - aTGC limits (7 TeV)
 - γγ/Vγ (7 TeV, 2010 only)
- Conclusions and CMS outlook

- Diboson processes at the LHC
 - Standard Model measurements as physics benchmarks
 - Cross sections
 - Direct measurement of Triple Gauge Couplings (TGCs)
 - Higgs
 - SM ZZ and WW serve as irreducible background to Higgs searches
 - BSM physics
 - New particle decays (e.g. W' \rightarrow WZ)
 - Anomalous triple gauge couplings (aTGCs)

Diboson Production (Leading order)

- Triple gauge couplings:
 - Charged triple gauge couplings (WWZ, WWγ) allowed
 - Neutral triple gauge couplings (ZZZ, ZZγ) forbidden in Standard Model
- Anomalous couplings lead to enhanced cross section, larger V p_T

WW \rightarrow 2l2v, Analysis Overview

- Key features:
 - Non-resonant
 - Important in Higgs search
- Signature: two high p_T leptons + high ME_T
- Background treatment:
 - W+jets reduced using centraland b-jet vetoes, estimated from data via lepton fake rate extrapolation
 - Top background estimated from data via top veto fake rate
 - DY contribution (outside Z window) estimated by normalizing the simulation to the yield within the Z window

Ian Ross - University of Wisconsin

WW, 7 TeV (4.92 fb⁻¹)

events/bin

Sample	Yield \pm stat. \pm syst.
$ m gg ightarrow W^+W^-$	$46.0 \pm 0.6 \pm 14.2$
$q \bar{q} \rightarrow W^+ W^-$	$750.9 \pm 4.1 \pm 53.1$
tt̄ +tW	$128.5 \pm 12.8 \pm 19.6$
W+jets	$59.5 \pm 3.9 \pm 21.4$
WZ+ZZ	$29.4\pm0.4\pm2.0$
Z/γ^*	$11.0 \pm 5.1 \pm 2.6$
$W+\gamma$	$18.8\pm2.8\pm4.7$
$Z/\gamma^* ightarrow au au$	$0.0\pm1.0\pm0.1$
Total Background	$247.1 \pm 14.6 \pm 29.5$
Signal + Background	$1044.0 \pm 15.2 \pm 62.4$
Data	1134

 $\sigma_{WW} = 52.4 \pm 2.0 \text{ (stat.)} \pm 4.5 \text{ (syst.)} \pm 1.2 \text{ (lumi.) pb.}$ Theory: 47.0 ± 2.0 pb (MCFM)

Ian Ross - University of Wisconsin

4.October.2012

WW, 8 TeV (3.54 fb⁻¹)

sample	yield \pm stat. \pm syst.
gg→WW	$43.3 \pm 1.0 \pm 13.4$
$qq \rightarrow WW$	$640.3 \pm 4.9 \pm 47.4$
$t\bar{t} + tW$	$131.6 \pm 12.7 \pm 19.5$
W + jets	$60.0 \pm 4.3 \pm 21.6$
WZ + ZZ	$27.4\pm0.5\pm2.9$
Z/γ^*	$42.5\pm6.0\pm9.9$
$W\gamma + W\gamma^*$	$13.6 \pm 2.4 \pm 4.3$
total background	$275.2 \pm 14.9 \pm 31.2$
signal + background	$958.8 \pm 15.7 \pm 58.3$
data	1111 ± 33

 $\sigma_{WW} = 69.9 \pm 2.8 \text{ (stat.)} \pm 5.6 \text{ (syst.)} \pm 3.1 \text{ (lumi.) pb.}$ Theory: 57.3^{+2.4}-1.6 pb (MCFM)

WW/WZ in dijets

- Key features:
 - Large branching ratio
 - Full handle on boson p_T
- Signature: Leptonically decaying
 W with exactly two non-b jets
- Background treatment:
 - Yields extracted via unbinned maximum likelihood fit to dijet invariant mass

• $\sigma(WW+WZ) = 68.89 \pm 8.71$ (stat) ± 9.70 (syst) ± 1.52 (lumi) pb

• Theory: 65.6 ± 2.2 pb

75420

75419

 5.153×10^{-3}

 1697 ± 57

Total from fit

Acceptance \times efficiency ($A\varepsilon$)

Expected WW+WZ yield from simulation

Data

39371

39365

 2.633×10^{-3}

 867 ± 29

WW/WZ aTGC Limits

- Anomalous couplings parameterized via Δg_{Z}^{1} , λ_{Z} , and $\Delta \kappa_{\gamma}$
- Assume the SM value $\Delta g_{Z}^{1} = 0$, set limits on λ_{Z} and $\Delta \kappa_{\gamma}$
- Dijet pT chosen as observable
- Require:
 - $75 < m_{jj} < 90 \text{ GeV}$
- Set 95% upper limit in $(\lambda_Z, \Delta \kappa_{\gamma})$ space using CLs methodology

$$-0.038 < \lambda_Z < 0.030$$

 $-0.111 < \Delta \kappa_{\gamma} < 0.142$

Ian Ross - University of Wisconsin

WZ \rightarrow 3lv (1.09 fb⁻¹ @ 7 TeV)

- Signature:
 - Two leptons consistent with $60 \le M_{11} \le 120$, third lepton $+ME_T$
- Backgrounds:
 - Data-driven: Z+Jets, ttbar
 - From MC:
 - ZZ→41, Zγ, WZ to τ decays
- Key systematics: Efficiency, theory, background estimations

channel	Nobserved	cross section (pb)
$\sigma_{WZ \rightarrow eeev}$	22	$0.086 \pm 0.022(stat) \pm 0.007(syst) \pm 0.005(lumi)$
$\sigma_{WZ \to ee\mu\nu}$	20	$0.060 \pm 0.017(stat) \pm 0.005(syst) \pm 0.004(lumi)$
$\sigma_{WZ \to \mu \mu e \nu}$	13	$0.053 \pm 0.018(stat) \pm 0.004(syst) \pm 0.003(lumi)$
$\sigma_{WZ \to \mu \mu \mu \nu}$	20	$0.060 \pm 0.016(stat) \pm 0.004(syst) \pm 0.004(lumi)$

 $\sigma(pp \rightarrow WZ + X) = 17.0 \pm 2.4 \text{ (stat.)} \pm 1.1 \text{ (syst.)} \pm 1.0 \text{ (lumi.)} \text{ pb.}$ Theory: $17.5 \pm 0.6 \text{ pb}$ (MCFM)

Ian Ross - University of Wisconsin

4.October.2012

- First observation of $Z \rightarrow 41$ peak at a hadron collider
- Key backgrounds:
 - $pp \rightarrow Z\gamma^* \rightarrow 41$ (from MC)
 - Z+X (from Data)
- Define signal region as $80 < M_{4L} < 100 \text{ GeV}$

CMS Experiment at LHC, CERN Data recorded: Thu Oct 27 17:10:24 2011 EDT Run/Event: 180076 / 456795917

CMS

Final state channels	4e	4μ	2e2µ	4ℓ
Irreducible background $(pp \rightarrow Z\gamma^* \rightarrow 4\ell)$	0.04	0.16	0.08	0.3 ± 0.03
Other reducible backgrounds	0.01	0.01	0.05	0.1 ± 0.13
Expected signal $(pp \rightarrow Z \rightarrow 4\ell)$	3.1	12.3	9.2	24.6 ± 2.2
Total expected (MC)	3.2	12.5	9.3	25.0 ± 2.2
Observed events	2	14	10	26
Rate from the fit of the observed mass distribution		13.6	9.7	25.4

- 26 events observed, 24.6
 expected signal, 0.4 expected
 background
- $\sigma \times BR(Z \rightarrow 4l) = 125_{-23}^{+26}$ (stat.) _{-6}^{+9} (syst.) _{-5}^{+7} (lumi) fb

- Measured BR($Z \rightarrow 41$) = 4.4 $_{-0.8}^{+1.0}$ (stat.) ± 0.2 (syst.) x 10⁻⁶
 - Theory: 4.45 x 10⁻⁶ (CalcHEP)

Ian Ross - University of Wisconsin

ZZ-+41 Analysis Overview

Key features:

- ZZ \rightarrow 4l (l=e, μ) provides clean signature
 - Low background, high resolution ideal for Higgs physics
 - Beyond the Standard Model (ZZ decays of new particles, aTGCs)
- 212τ states included in cross-section measurements (~10-15% additional yield)
- Signature: four leptons with $60 \le M_{Z1,} M_{Z2} \le 120 \ (30 \le M_{vis} \le 80 \ for \ \tau\tau \ legs)$
- Background treatment:
 - Z+jets/WZ/ttbar, extracted from data via applying lepton fake rates to regions where one or both leptons fail selection criteria

$ZZ \rightarrow 417$ TeV Results

Decay	N_{ZZ}^{exp}	Background	Total	Observed	
channel			expected		41 Total:
μμμμ	$15.91 \pm 0.05 \pm 1.43$	$0.52 \pm 0.26 \pm 0.25$	$16.43 \pm 0.26 \pm 1.45$	14	54 observed,
eeee	$10.50 \pm 0.04 \pm 0.95$	$0.25 \pm 0.14 \pm 0.07$	$10.75 \pm 0.14 \pm 0.95$	9	54.6 expected
μμee	$26.74 \pm 0.10 \pm 2.41$	$0.58 \pm 0.18 \pm 0.23$	$27.32 \pm 0.17 \pm 2.41$	31	(52.2 ± 1.4)
$\mu\mu\tau_{\rm h}\tau_{\rm h}$	$0.82 \pm 0.02 \pm 0.07$	$0.75 \pm 0.16 \pm 0.08$	$1.57 \pm 0.16 \pm 0.11$	0	(53.2+1.4)
$ee \tau_h \tau_h$	$0.75 \pm 0.01 \pm 0.07$	$0.76 \pm 0.16 \pm 0.05$	$1.51 \pm 0.16 \pm 0.09$	1	
$ee \tau_e \tau_h$	$1.17 \pm 0.02 \pm 0.11$	$0.96 \pm 0.34 \pm 0.12$	$2.29 \pm 0.34 \pm 0.16$	3	212τ Total:
$\mu\mu\tau_{\rm e}\tau_{\rm h}$	$1.15 \pm 0.02 \pm 0.10$	$0.35 \pm 0.34 \pm 0.11$	$1.60 \pm 0.34 \pm 0.15$	3	11 observed
$\mu\mu\tau_{\mu}\tau_{h}$	$1.08 \pm 0.02 \pm 0.10$	$0.55 \pm 0.24 \pm 0.11$	$1.64 \pm 0.24 \pm 0.15$	2	
$ee\tau_{\mu}\tau_{h}$	$0.94 \pm 0.02 \pm 0.08$	$0.22 \pm 0.14 \pm 0.04$	$1.17 \pm 0.14 \pm 0.06$	0	11.5 expected
$ee \tau_e \tau_\mu$	$0.54 \pm 0.01 \pm 0.05$	$0.64 \pm 0.44 \pm 0.16$	$1.22 \pm 0.44 \pm 0.17$	0	(7.1+4.4)
$\mu\mu\tau_{\rm e}\tau_{\mu}$	$0.60 \pm 0.01 \pm 0.05$	$0.14 \pm 0.30 \pm 0.10$	$0.74 \pm 0.30 \pm 0.11$	2	````'

 $\sigma(pp \rightarrow ZZ) = 6.24^{+0.86}_{-0.80}(stat.)^{+0.41}_{-0.32}(sys.) \pm 0.14(lumi.)$ pb Theory: 6.3 ± 0.4 pb (MCFM)

$ZZ \rightarrow 41 8$ TeV Results

• $\sigma(pp \rightarrow ZZ) = 8.4 \pm 1.0(stat.) \pm 0.7(sys.) \pm 0.4(lumi.) pb$

Theory: 7.7 ± 0.4 pb (MCFM)

Ian Ross - University of Wisconsin

- ZZZ/ZZ γ vertex described with $f_4^{Z/\gamma}$ and $f_5^{Z/\gamma}$ couplings
- 41 invariant mass used as discriminating variable
- Limits set using CLs methodology

2010 Results, yy and Vy

Ian Ross - University of Wisconsin

- Diboson production measurements at CMS indicate good agreement with Standard Model predictions
- aTGC limits have been produced in a handful of couplings, with sensitivity comparable to (or better than) current LEP and Tevatron limits
- New measurements and updates coming soon!

CMS Boson Measurement outlook

CMS

Backup

WW, 7 TeV Systematics

	qq	gg	top	W + jets	WZ	$Z/\gamma *$	$W + \gamma$	$W + \gamma^*$	$Z/\gamma *$
	$\rightarrow W^+W^-$	$\rightarrow W^+W^-$			+ZZ	$\rightarrow \ell \ell$			$\rightarrow \tau \tau$
Luminosity	2.2	2.2	-	-	2.2	-	2.2	-	-
Trigger efficiency	1.5	1.5	-	-	1.5	-	1.5	-	-
Lepton id efficiency	2.0	2.0	-	-	2.0	-	2.0	-	-
Muon momentum scale	1.5	1.5	-	-	1.5	-	1.5	-	-
Electron energy scale	2.5	2.5	-	-	1.9	-	2.0	-	-
$E_{\rm T}^{\rm miss}$ resolution	2.0	2.0	-	-	2.0	-	2.0	-	-
Jet veto efficiency	4.7	4.7	-	-	4.7	-	4.7	-	-
pile-up	2.3	2.3	-	-	2.3	-	2.3	-	-
top normalisation	-	-	18	-	-	-	-	-	-
W + jets normalisation	-	-	-	36.0	-	-	-	-	-
$\mathrm{Z}/\gamma^* \! ightarrow \ell^+ \ell^-$ normalisation	-	-	-	-	-	50.0	-	-	-
$W + \gamma$ normalisation	-	-	-	-	-	-	30.0	-	-
$W + \gamma^*$ normalisation	-	-	-	-	-	-	-	30.0	-
$\mathrm{Z}/\gamma^* ightarrow au^+ au^-$ normalisation	-	-	-	-	-	-	-	-	10.0
PDFs	2.3	0.8	-	-	5.9	-	-	-	-
Higher order corrections	1.5	30.0	-	-	3.3	-	-	-	-
Sample statistics	0.8	1.3	-	6.6	1.5	-	48.9	10.3	15.9

WW 7 TeV

Data

WW

Top Fakes

Z+jets

180 200 p^{//}_T (GeV)

160

🔶 Data

WW

Z+jets

 $\bigcirc \sigma$ (stats. \oplus syst.)

140 160 p____(GeV)

120

WZ + ZZ Top Fakes

WZ + ZZ

WW, 8 TeV Systematics

	qq	gg	top	W+jets	WZ	$Z/\gamma *$	$W + \gamma$	$W + \gamma^*$
	$\rightarrow WW$	$\rightarrow WW$			+ZZ			
Luminosity	5.0	5.0	-	-	5.0	-	5.0	-
Trigger efficiency	1.5	1.5	-	-	1.5	-	1.5	-
Lepton id efficiency	2.0	2.0	-	-	2.0	-	2.0	-
Muon momentum scale	1.5	1.5	-	-	1.5	-	1.5	-
Electron energy scale	2.5	2.5	-	-	1.9	-	2.0	-
$E_{\rm T}^{\rm miss}$ resolution	2.0	2.0	-	-	2.0	-	2.0	-
Jet veto efficiency	4.7	4.7	-	-	4.7	-	4.7	-
pile-up	2.3	2.3	-	-	2.3	-	2.3	-
top normalisation	-	-	9 🕀 13	-	-	-	-	-
Wjets normalisation	-	-	-	7 🕀 36	-	-	-	-
Z normalisation	-	-	-	-	-	36 🕀 20	-	-
$W + \gamma$ normalisation	-	-	-	-	-	-	30	-
$W + \gamma^*$ normalisation	-	-	-	-	-	-	-	30
PDFs	2.3	0.8	-	-	5.9	-	-	-
Higher order corrections	1.5	30.0	-	-	3.3	-	-	-
Sample statistics	1.1	3.1	-	-	4.1	-	8.4	8.4

WW, 8 TeV

- Systematic uncertainties:
 - Trigger Efficiency 1%
 - Lepton Reconstruction and selection efficiency 2%
 - Jet Energy scale 0.6%
 - Missing Transverse Energy Resolution 0.5%
 - Fit uncertainty 0.2%
 - Luminosity Determination 2.2%
 - Theory uncertainty on acceptance 4%

WW/WZ to Dijets, µ channel

WW/WZ to Dijets, e channel

Manifestation of an aTGC signal, WW/WZ dijets

Ian Ross - University of Wisconsin

ZZZ/ZZy aTGCs

W, Z

• aTGCs motivation :

- Neutral TGC (ZZZ/ZZγ) forbidden^p in SM (no s-channel at tree level)
- A way to prospect new physics
- ZZZ/ZZ γ vertex described with $f_{4}^{Z_{i_{\bar{p}}}} \equiv$
- Previous results:

Experiment	f_4^Z	f_4^{γ}	f_5^Z	f_5^{γ}	Ref.	Comments
ALEPH	[-0.60;0.61]	[-0.40;0.36]	[-1.22;1.10]	[-0.81;0.79]	[23]	2D fit results
DELPHI	[-0.40;0.42]	[-0.23;0.25]	[-0.38;0.62]	[-0.52;0.58]	[24]	
L3	[-1.9;1.9]	[-1.1;1.2]	[-5.0;4.5]	[-3.0;2.9]	[27]	$\sqrt{s} = 189 \text{ GeV only}$
OPAL	[-0.45;0.58]	[-0.32;0.33]	[-0.94;0.25]	[-0.71;0.59]	[26]	
LEP WG	[-0.30;0.30]	[-0.17;0.19]	[-0.34;0.38]	[-0.32;0.36]	[25]	LEP combination
CDF	[-0.12;0.12]	[-0.10;0.10]	[-0.13;0.12]	[-0.11;0.11]	[29]	Λ=1.2 TeV
D0	[-0.28;0.28]	[-0.26;0.26]	[-0.31;0.29]	[-0.20;0.28]	[28]	\sim 1 fb $^{-1}$, Λ =1.2 TeV
ATLAS	[-0.12;0.12]	[-0.15;0.15]	[-0.13;0.13]	[-0.13;0.13]	[30]	\sim 1 fb $^{-1}$, Λ =2 TeV
ATLAS	[-0.07;0.07]	[-0.08;0.08]	[-0.07;0.07]	[-0.08;0.08]	[30]	\sim 1 fb ⁻¹ , Λ =inf

Ian Ross - University of Wisconsin

W, Z

W, Z

 γ, Z, W

Invariant Mass Spectra, 7 TeV

Invariant Mass Spectra, 8 TeV

Sensitivity to aTGCs is driven by long m₄₁ tails

2010 Results, Vy

Ian Ross - University of Wisconsin

4.October.2012