B-physics in ATLAS

Maren Ugland, University of Bergen On behalf of the ATLAS collaboration

LHC Days 2012

October 1 - 6, 2012 Split, Croatia

Outline

- 1 The ATLAS detector, data, and triggers
- 2 Heavy flavour production and properties (lifetimes)
- 3 Observation of $\chi_b(3P)$
- 4 Rare B Decays: $B_{(s)} \rightarrow \mu^+ \mu^-$
- **5** ϕ_s and $\Delta \Gamma_s$ from $B_s \rightarrow J/\Psi \phi$
- 6 Conclusions and Outlook

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

The ATLAS detector

General purpose detector

Tracking:

- Silicon (Pixel + SemiConductor Tracker) and Transition Radiation Tracker
- 2T solenoidal field

Muon Spectrometer:

- Dedicated tracking chambers
- 0.5-2T toroidal field

Tracking performances:

- $10 \mu m$ impact parameter resolution
- $\frac{\sigma_{PT}}{PT} \sim 0.05\% p_T \oplus 1.5\%$
- $\sigma_m(J/\psi \Upsilon) \sim 60 120$ MeV (ID dominated)

ATLAS Data Taking

2011:

- > $5fb^{-1}$ recorded in 2011
- Instantaneous luminosity and pile-up steadily increasing

2012:

- > $14fb^{-1}$ recorded (so far)
- Flatter instantaneous luminosity profile
- Harsher pile-up conditions!

20

18

16

14

12

27/03

80

25/04

LHC Delivered

Total Delivered: 15.0 fb

Total Recorded: 14.0 fb

24/05 22/06 21/07 19/08 18/09

Day in 2012

ATLAS Recorded

fotal Integrated Luminosity [fb

ATLAS Triggers

- Di-muon triggers are our main tool, but also have single-muon triggers (higher p_T)
- Ran with constant trigger thresholds for di-muons all across 2011
- As luminosity increases → more stringent selection
 - Higher p_T thresholds
 - Specific di-muon selections with barrel/endcap logic (more central decays)
 - Specific resonances
 - Tighter quality cuts

B-physics data collected with the above triggers all across 2011 and most of 2012

The ATLAS Heavy Flavour Program

- Production, polarization and spectroscopy:
 - Charm $(D^0, D^+, D_s, D^*, ...)$
 - Onia $(\Upsilon_{1,2,3}, J/\psi, \psi', ...)$
 - B mesons (B^0, B^+, B_s, B_c)
 - b-baryons (Λ, Θ, χ)
- Lifetimes
- Rare decays
- CP violation

 \rightarrow QCD predictions

- \rightarrow QCD, HQET
- \rightarrow CKM, SM, NP
- \rightarrow CKM, SM, NP

I will focus on new physics-related studies, and new states searches within the SM itself

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Open Charm and Onia

All masses consistent with PDG!

Widths consistent with expectations from detector simulations!

Maren Ugland (University of Bergen)

B-physics in ATLAS

 $\Upsilon(1S, 2S, 3S) \rightarrow \mu\mu$

ELE NOR

Open Beauty Production

- Latest updates using 2011 data
- ullet Masses of all B-hadrons measured in exclusive decays with J/ ψ

• All masses consistent with PDG!

Widths consistent with expectations from detector simulations! (z) = 0

Charm, B and Onia Production

- Observation of D, J/ ψ , $\psi(2S)$ and Υ with ATLAS ATLAS-CONF-2010-034, ATLAS-CONF-2010-045
- D[±], D^{*}, D_s differential and integrated cross sections
- J/ ψ differential cross section, and prompt/non-prompt separation Nucl.Phys.B, Vol. 850, issue 3, 27/09/2011, pp 387-444
- Υ production cross-section

Phys.Lett.B, Vol. 703, issues 1-2, 3/11/2011, pp. 128-446

- Observation of χ_c states through J/ $\psi\gamma$ transitions ATLAS-CONF-2011-136
- B-hadron differential production cross-section Nucl.Phys.B, Vol. 864, issue 3, 21/11/2012, pp. 341-381

Lifetimes

- I ifetime measurements are the foundation for more complex measurements and selections (oscillations, mixing, $\Delta\Gamma_s$, β_s , rare decays, etc.)
- All lifetimes (inclusive and exclusive) consistent with PDG!

Λ_b Mass and Lifetime

arXiv:1207.2284

- $$\begin{split} \Lambda^0_b &\to J/\psi(\mu^+\mu^-)\Lambda^0(p\pi^-) \\ \bullet \ 4.9 \text{fb}^{-1} \text{ of } 2011 \text{ data, } \sqrt{s} = 7 \, TeV \\ \bullet \ \tau &= \frac{L_{xy} \cdot m^{PDG}}{p_T} \end{split}$$
 - Simultaneous mass and decay time maximum likelihood fit

$$\begin{split} \tau_{\Lambda_b} &= 1.449 \pm 0.036 (\text{stat.}) \pm 0.017 (\text{syst.}) \text{ ps} \\ m_{\Lambda_b} &= 5619.7 \pm 0.7 (\text{stat.}) \pm 1.1 (\text{syst.}) \text{ MeV} \end{split}$$

Best single-experiment measurement of τ_{Λ_b} !

< 67 ▶

A B F A B F

ELE NOR

Observation of $\chi_b(3P)$

- 4.4fb⁻¹ of 2011 data collected at $\sqrt{s} = 7$ TeV
- $\chi_b(nP)$ observed through radiative decays to Υ
 - Υ identified through di-muon decay
 - Reconstruct either converted (e⁺e⁻) or un-converted photons originating from di-muon vertex

Phys.Rev.Lett.108 (2012) 152001

A B < A B <</p>

Observation of $\chi_b(3P)$

- $\chi_b \rightarrow \Upsilon(1S, 2S)\gamma$
 - Measure $m(\chi)$ - $m(\Upsilon)$
 - 1P (9.90 GeV) and 2P (10.26 GeV) states clearly visible
 - Masses consistent with pdg
- Additional structure at 10.5 GeV seen with both converted and un-converted photons

 $m(\chi_b(3P)) = 10.530 \pm 0.005(\text{stat.}) \pm 0.009(\text{syst.})$ GeV

Consistent with theoretical predictions!

First new resonance discovered at the LHC!

Phys.Rev.Lett.108 (2012) 152001

Search for Rare B Decays: $B_s \rightarrow \mu^+ \mu^-$

Phys.Lett. B713 (2012) 387

- Flavour Changing Neutral Currents (FCNC) are highly suppressed in the Standard Model (SM)
 - Expected $B_s \rightarrow \mu\mu$ branching fraction is $(3.2 \pm 0.2) \times 10^{-9}$ Buras et al., Phys.Lett. B694 (2011) 402 $(3.5 \pm 0.3) \times 10^{-9}$ UTfit prediction

- $B \rightarrow \mu \mu$ branching ratio may be significantly enhanced by couplings to non-SM particles
 - SM well understood \rightarrow this channel provides a powerful method to peek into NP!

Analysis Strategy

- 2.4fb⁻¹ of data collected April-August 2011 at $\sqrt{s} = 7 TeV$ \rightarrow Update expected soon!
- Aim at cancellations of uncertainties through measurement wrt a reference decay: $B^\pm\to J/\psi K^\pm$
- Limit placed using standard CLs method
- Analysis is blind! Signal region (\pm 300MeV around B_s mass) is blinded

$$BR(B_s \to \mu^+ \mu^-) = N_{\mu^+ \mu^-} \left[\frac{1}{N_{J/\psi K^{\pm}}} \frac{A_{J/\psi K^{\pm}}}{A_{\mu^+ \mu^-}} \frac{\epsilon_{J/\psi K^{\pm}}}{\epsilon_{\mu^+ \mu^-}} \frac{f_u}{f_s} BR(B^{\pm} \to J/\psi K^{\pm} \to \mu^+ \mu^- K^{\pm}) \right]$$

• Signal extraction

- Event count in "signal" region
- "subtraction" of sidebands: interpolation from 50% of sidebands (even events)

• Signal-background discrimination

- 14 variables combined with multivariate tools (BDT)
- 50% of sidebands used to model background=(odd events) (≥ → ≥ = ∽ <

Analysis Strategy

- 2.4fb $^{-1}$ of data collected April-August 2011 at $\sqrt{s} = 7 \, TeV$
- Aim at cancellations of uncertainties through measurement wrt a reference decay: $B^\pm \to J/\psi K^\pm$
- Limit placed using standard CLs method
- Analysis is blind! Signal region (\pm 300MeV around B_s mass) is blinded

$$BR(B_s \to \mu^+ \mu^-) = N_{\mu^+ \mu^-} \left[\frac{1}{N_{J/\psi K^{\pm}}} \frac{A_{J/\psi K^{\pm}}}{A_{\mu^+ \mu^-}} \frac{\epsilon_{J/\psi K^{\pm}}}{\epsilon_{\mu^+ \mu^-}} \frac{f_u}{f_s} BR(B^{\pm} \to J/\psi K^{\pm} \to \mu^+ \mu^- K^{\pm}) \right]$$

• Efficiencies and acceptances

• Derived from MC ("calibrated" on data)

 $\epsilon \cdot A = \#(\text{reconstructed and selected events})/\#(\text{generated events})$

• Reference channel selected with cuts as similar as possible to signal

• BR of the reference channel and relative production rate $\frac{f_u}{f_c}$

• Taken from PDG and the latest LHCb results

Maren Ugland (University of Bergen)

B-physics in ATLAS

1 3 1 3 1 3 1 3 0 0 0

Backgrounds and Discriminants

Dominant: continuum background

- $bb \rightarrow \mu\mu X$
- Smoothly varying with di-muon mass
- Interpolated from sidebands into the signal region

Resonant backgrounds

- $B \rightarrow hh$, with hadrons mis-identified as muons (0.2-0.4%)
- $\bullet~$ Similar decay topology as signal $\rightarrow~$ hard to suppress
- Contribution estimated from MC: 0.24 events in total

Discriminating variables picked to exploit:

- PV-SV separation (L_{xy}, ct significance)
- Symmetry of final state (pointing angle, d_0, ...)
- Full reconstruction (pointing angle, D_{min} , ...)
- B hadronization features (isolation, p_T of B, ...)

Box Opening

	$ \eta < 1.0$	$1.0 < \eta < 1.5$	$1.5 < \eta < 2.5$
Even events in sidebands	5	0	2
Expected continuum background in SR	3.86	0	2.28
Expected resonant background in SR	0.1	0.06	0.08
Observed events in SR	2	1	0

- Grey areas: sideband regions
- Dotted blue lines: optimized search windows
- Red curves: enhanced MC signal peaks (x10)

Upper Limit

ATLAS-CONF-2012-061

ATLAS (2.4fb⁻¹) limit

- Upper limit extracted with modified frequentist (CLs) approach
- Median expected limit: 2.3×10^{-8} @ 95% CL
- Observed limit: 2.2×10^{-8} @ 95% CL

LHC wide combination

- Combined limit: 4.2×10^{-9} @ 95% CL
- Close to SM prediction: 3.2×10^{-9}
- Compatible with bkg+SM sig: $(1 CL_{S+B}) = 84\%$
- Less compatible with bkg-only: $(1 CL_B) = 5\%$

Mode	Limit	ATLAS	CMS	LHCb 2010	LHCb 2011	Combined
	Bkg Only	23	(3.6)	65	3.4	2.3
$B_s^0 \rightarrow \mu^+ \mu^-$ (10 ⁻⁹)	Bkg+SM		8.4		7.2	6.1
	Obs	22	7.7 (7.2)	56	4.5	4.2

D shusies in ATLAS

LHC Days 2012

< 回 > < 三 > < 三 > 三 三 < つ Q (P)

ϕ_s and $\Delta \Gamma_s$ from $\mathsf{B}_s \to J/\Psi \phi$

arXiv:1208.0572

- The time evolution of the B_s and \overline{B}_s is described by the superposition of the B_L and B_H states, with masses $m_s \pm \frac{\Delta m_s}{2}$ and lifetimes $\Gamma_s \pm \frac{\Delta \Gamma_s}{2}$
- The mass eigenstates deviate from the CP eigenstates \rightarrow described in the SM by the mixing phase ϕ_s ($\phi_s = \arg[V_{ts}^2] = -2\beta_s$)
- SM predictions: $\phi_s = -0.0368 \pm 0.0018$ rad $\Delta \Gamma_s = 0.082 \pm 0.021$ ps⁻¹
- New physics can contribute to ϕ_s and change the ratio $\Delta \Gamma_s / \Delta m_s$

글 > - + 글 >

ϕ_s and $\Delta \Gamma_s$ from $\mathsf{B}_s \to J/\Psi \phi$

Data

• $4.9 f b^{-1}$, $\sqrt{s} = 7 T e V$

Selection

- η -dependent J/ψ mass window (varying resolution)
- ϕ required to be within 22MeV of the PDG mass
- $\chi^2(B \text{ decay vertex fit})/\#dof < 3$
- No flavour tagging used to distinguish between initial B_s and \bar{B}_s states

Efficiency

• Data-driven procedures (e.g. J/ψ tag & probe studies)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Angular analysis

- $B_s \rightarrow J/\psi \phi$
 - Vector-Vector decay
 - $L = 0, 2 \rightarrow CP$ -even
 - $L = 1 \rightarrow \text{CP-odd}$
- CP eigenstates are distinguished statistically through the time-dependence of the decay and angular correlations amongst the final-state particles

- Measurement uses "transversity basis":
 - Suitable angular parameterization to disentangle angular distributions
 - x-axis direction of decay
 - xy-plane φ decay plane
 - ψ_T K⁺ angle wrt x-axis
 - θ_T, ϕ_T polar and azimuthal coordinates of μ^+
 - All angles and orientations defined in the parents' decay frame
 - Triplet of angular coordinates $\Omega = (\psi_T, \theta_T, \phi_T)$ uniquely identifies the decays angular signature
 - $\bullet\,$ Can define 3 decay amplitudes, $A_0,A_{\perp}\, and A_{\parallel}$ that correspond to S-, P-, and D-wave transitions respectively

• Signal extracted from an unbinned maximum likelihood fit in (m, proper-time, Ω)

ELE NOR

Fit Results: Mass and Proper Time

- Time dependence of untagged rate does not depend on Δm_s $\rightarrow \Gamma_L$ and Γ_H can be determined from data sample of untagged B_s mesons (Extraction of Δm_s requires tagging)
- Separation of Γ_L and $\Gamma_H \rightarrow$ can determine the lifetime difference between CP-even (B_s^L) and CP-odd (B_s^H) states

三日 のへで

Fit Results: Transversity Angles

Allows to disentangle the amplitudes of the projections on the transversity basis: $A_0, A_{\parallel}, A_{\perp}$, and A_s

< 67 ▶

Fit Result: Summary

- In an untagged analysis ATLAS is not sensitive to $\delta_{\perp} \rightarrow$ Constrain to 2.95 \pm 0.39 rad [LHCb]
- So, with $4.9 fb^{-1}$ of ATLAS 2011 data, without flavour tagging, and assuming $\delta_{\perp} = 2.95 \pm 0.39$ rad and $\Delta \Gamma_s$ positive

$$\begin{split} \phi_s &= 0.22 \pm 0.41 \quad (\text{stat.}) \pm 0.10 \quad (\text{syst.}) \text{ rad} \\ \Delta \Gamma_s &= 0.053 \pm 0.021 \quad (\text{stat.}) \pm 0.008 \quad (\text{syst.}) \text{ ps}^{-1} \\ \Gamma_s &= 0.677 \pm 0.007 \quad (\text{stat.}) \pm 0.004 \quad (\text{syst.}) \text{ ps}^{-1} \\ |A_0(0)|^2 &= 0.528 \pm 0.006 \quad (\text{stat.}) \pm 0.009 \quad (\text{syst.}) \\ |A_{\parallel}(0)|^2 &= 0.220 \pm 0.008 \quad (\text{stat.}) \pm 0.007 \quad (\text{syst.}) \end{split}$$

Likelihood $(\phi, \Delta \Gamma)$ Contour and Comparison

Consistent with SM and other experiments!

EL OQO

Conclusions

- ATLAS B physics program very successfull
- Consistent data-collection strategy for 2011 and 2012 data taking periods, with good signal collection efficiencies
- We discovered the first new particle at the LHC!
- First iterations on the pillars of our NP related program:
 - ϕ_s from $B_s \to J/\psi \phi$
 - Rare B decays
- New analyses, and updated results with higher integrated luminosities and improved analysis techniques in the pipeline

A = A = A = A = A = A

Backup

< 🗇 🕨

Backup

Separation in B Mass Resolution

- Signal candidates are split in 3 |η_{max}| regions: Barrel, Transition, Endcap → (51%,24%,25%)
- Mass resolution gets worse with increasing |η|: (60MeV, 80MeV, 110MeV)

くほと くほと くほと

Reference Channel Yield

- BDT trained for B_s used also for B⁺ in order to minimize selection systematics
- Inclusion of per-event mass resolution in the fit
- Yield uncertainties
 - Statistical
 - Systematic
 - Vary binning
 - Signal/ background models
 - Binned/un-binned fit

$ \eta_{max} $ Range	0-1.0	1.0 - 1.5	1.5 - 2.5
$B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^{+}\mu^{-}K^{\pm}$	4300	1410	1130
statistical uncertainty	$\pm 1.6\%$	$\pm 2.8\%$	$\pm 3.0\%$
systematic uncertainty	$\pm 2.9\%$	$\pm 7.4\%$	$\pm 14.1\%$

LHC Days 2012

A B < A B <</p>

Boosted Decision Tree

- Combine 14 discriminants in 1 variable
- Trained and optimized on $B_s \rightarrow \mu \mu$ MC and odd sideband events
- Mass independence checked with training on higher masses (6.5GeV signal mass)

Arbitrary Units

8

200

date

ATLAS

= 7 TeV

Bs Monte Carl

Backup

Ingredients for the Limit Extraction

・ 同 ト ・ ヨ ト ・ ヨ ト

EL OQO

ϕ_s and $\Delta \Gamma_s$ from $\mathsf{B}_s \to J/\Psi \phi$

 In general, the decay to a final state that is coupled to B_s and/or B_s, exhibits fast oscillations driven by Δm_s. Interference between amplitudes for both states generates CP violation, and conveys information on φ_s

• If \overline{B}/B flavour at production is not determined (not tagged), the fast oscillations cannot be observed, but interference terms remain if the final state is described by a superposition of amplitudes of different CP values

Backup

Systematic Uncertainties & Results

Several techniques used to derive systematics:

- Variation in detector simulation (e.g. alignment)
- Data-driven studies (e.g. efficiency)
- Monte Carlo "toy studies" (e.g. mass models, background angles)

٩	Variations	in	analysis	methods	and
	assumption	ns			

Parameter	Value	Statistical	Systematic
		uncertainty	uncertainty
$\phi_s(rad)$	0.22	0.41	0.10
$\Delta\Gamma_s(\mathrm{ps}^{-1})$	0.053	0.021	0.008
$\Gamma_s(\mathrm{ps}^{-1})$	0.677	0.007	0.004
$ A_0(0) ^2$	0.528	0.006	0.009
$ A_{\parallel}(0) ^2$	0.220	0.008	0.007
$ A_{S}(0) ^{2}$	0.02	0.02	0.02

Systematic Uncertainty	$\phi_s(\text{rad})$	$\Delta\Gamma_s(\mathrm{ps}^{-1})$	$\Gamma_s(\mathrm{ps}^{-1})$	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$
Inner Detector alignment	0.04	< 0.001	0.001	< 0.001	< 0.001	< 0.01
Trigger efficiency	< 0.01	< 0.001	0.002	< 0.001	< 0.001	< 0.01
Signal mass model	0.02	0.002	< 0.001	< 0.001	< 0.001	< 0.01
Background mass model	0.03	0.001	< 0.001	0.001	< 0.001	< 0.01
Resolution model	0.05	< 0.001	0.001	< 0.001	< 0.001	< 0.01
Background lifetime model	0.02	0.002	< 0.001	< 0.001	< 0.001	< 0.01
Background angles model	0.05	0.007	0.003	0.007	0.008	0.02
B^0 contribution	0.05	< 0.001	< 0.001	< 0.001	0.005	< 0.01
Total	0.10	0.008	0.004	0.007	0.009	0.02

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

aren Ugland (University of Bergen)	B-physics in ATLAS	LHC Days 2012	34 / 35
------------------------------------	--------------------	---------------	---------

Symmetries of the Likelihood Function

The PDF describing the $B_s \rightarrow J/\psi \phi$ decay is invariant under the following simultaneous transformations:

$$\phi_{s}, \Delta \Gamma_{s}, \delta_{\perp}, \delta_{\parallel}, \delta_{S} \to \pi - \phi_{s}, -\Delta \Gamma_{s}, \pi - \delta_{\perp}, -\delta_{\parallel}, -\delta_{S}$$

In the absence of initial state flavour tagging the PDF is also invariant under

$$\phi_{\mathfrak{s}}, \Delta \Gamma_{\mathfrak{s}}, \delta_{\perp}, \delta_{\parallel}, \delta_{\mathfrak{S}} \rightarrow -\phi_{\mathfrak{s}}, \Delta \Gamma_{\mathfrak{s}}, \pi - \delta_{\perp}, -\delta_{\parallel}, -\delta_{\mathfrak{S}}$$

leading to a fourfold ambiguity.

The value for the Gaussian constraint on δ_{\perp} is taken from the LHCb measurement [arXiv:1112.3183] \rightarrow two of the four minima fitted in the present non-flavour tagged analysis are excluded from the results presented here.

Additionally a solution with negative $\Delta\Gamma_s$ is excluded following the LHCb measurement [arXiv:1202.4717]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの