

CMS QCD physics results

Olga Kodolova, SINP MSU on behalf of the CMS Collaboration

Outline

- Motivation
- Scope of studies
- CMS detector
- Soft physics
- Hard physics
- Summary

Motivation

- QCD is the constituent of the Standard Model which deals with strong interactions
- The verification of the QCD validity is the first step towards the new Physics.
 - QCD processes are background to the Higgs production, SUSY, contact interaction models, rare processes that are scope of the Standard Model itself
 - QCD defines the hadronization process of partons whatelse interaction mediator is in the hard production vertex

Scope of studies

Hard production
Inclusive and exclusive cross-section
Transverse momentum
Rapidity
Jet properties

Soft production
Underlying event to hard production
Soft interaction: multiplicity
Transverse momentum

Transverse momentu Rapidity Correlations

Outcome:

Cross-sections
Parton Distribution Functions
Parton showering details
Details of fragmentation process

Approximation approaches:

Perturbative QCD (pQCD) – LO, NLO, NNLO calculations, ME + parton showering, threshold ressumation
Non-perturbative QCD (Multi-parton interactions (MPI),
String/Clustering fragmentation models)

LHC days at Split 2012, Split, Croatia

Charged particles multiplicity and spectra at 0.9 TeV-7 TeV

new input to the dynamics of soft hadronic interactions

The CMS results are consistent with x₊=2p₊/√s scaling (pQCD prediction) with exponent N=4.9 ← 0.1

NLO calculations overestimates cross-section twice at all energies for high p₊ hadrons

PYTHIA 8 and Z2 describes η -distribution for low-p_T charged hadrons at 7 TeV

PRL 105(2010) 022002 JHEP08(2011)086 CMS-PAS-QCD-10-024

CMS powers www.penuory

Underlying event

UE- Everything in event that is not hard interaction

UE in DY events Relative to $p_T^{\ \mu\mu}$ with $M_{\mu\mu}$ in the vicinity of Z: Sensitive to ISR and MPI

UE in hadronic events

Leading cluster or track jet

(jet reconstructed from tracks only; can
go down to low-p_T)
is expected to reflect
the direction of the parton.

Comparison of UE in DY w.r.t. Hadronic:

Valuable information for further tuning MC models.

JHEP09(2011)109 CERN-PH-EP-2012-085

Sensitive to ISR,FSR,MPI

Long range correlations

(d) CMS N \geq 110, 1.0GeV/c<p $_{_{
m T}}<$ 3.0GeV/c

Observation of a Long-Range, Near-Side angular correlations at high multiplicity in pp events

at intermediate p_T (Ridge at ∆φ ~ 0)

Theoretical hypothesis:

- initial state correlated gluon flow
- collective parton flow effect at the final state

Final State

(d) N>110, 1.0GeV/c<p, <3.0GeV/c

Ridge is not reproduced neither of PYTHIA versions nor MADGRAPH

JHEP 1009 (2010) 091

Jets reconstruction

Calorimeter jets (CaloJets):

Jet clustered from Calorimeter Towers Subdetectors: ECAL,

CaloMET

HCAL

Selected subdetectors participate in reconstruction

Tracker jets:

Jet clustered from Tracks

Subdetectors: Tracker

ParticleFlow jets (PFJets):

Jet clustered from Particle Flow objects (a la generator level particles) which are reconstructed basing on cluster separation.

Subdetectors: ECAL,HCAL, Tracker, Muon

PFMET

All subdetectors
Participate in
reconstruction

The residual jet energy corrections is applied on top for all algorithms

JetPlusTrack jets (JPTJets):

Starting from calorimeter jets tracking information is added via subtracting average response and replacing with tracker measurements.

Subdetectors: ECAL,HCAL, Tracker, Muon TcMET

Two notes towards jet production measurement

Measurements are corrected to particle level via either unfolding procedure or bin-to-bin corrections

NLO calculations are corrected to particle level for fragmentation and MPI effect with and without Including parton showering using LO+PS generators

Provinces usury traducio

Inclusive central jets production

Motivation: constrain PDFs, differentiate between the different PDF sets

Measured jet p_T spectra in 5 rapidity bins were unfolded to particle level jet spectra using dAgositini Multidimensional unfolding method.

NLO calculations with non-perturbative corrections (NP) are used for comparison with data. NP corrections are got as averaged value between NPC got with PYTHIA and HERWIG.

A set of the different NLO PDFs is used to account for PDF uncertainty.

Data are in agreement with NLO calculations withing systematic uncertainties although NLO calculations are systematically overestimate cross-section in all rapidity bins.

Dijet production

Comparison with dats is done for the different PDFs in the different rapidity Bins.

Consistent with NLO calculations within Uncertainties, gives the constraint to PDFs.

CERN-PH-EP-2012-088, submitted to EPJC

LHC days at Split 2012, Split, Croatia

Dijet production: Δφ,Δη

Sensitivity to the initial and final state radiation.

NLO QCD (NLOJet++) + NP corrections Disagree with data at small $\Delta \phi$ dijets Where multiparton radiation effect dominates.

Good agreement of the dijet angular distribution with NLO QCD + NP corrections. A lower limit on the contact interaction scale 5.6 TeV(+), 6.7 TeV(-) is obtained.

Inclusive forward jets production

Jet 3<|η|<5

- 1. DGLAP evolution + parton showering (PYTHIA6/8, HERWIG 6) with the different UE tunes DGLAP with angular ordered shower (HERWIG++ 2.3)
- 2. NLO (POWHEG)+PYTHIA6 or HERWIG 6
- 3. NLO (NLOJET++, HEJ)+NP corrections
- 4. CCFM evolution (CASCADE) + uPDF

Data are in agreement with NLO calculations withing systematic uncertainties although NLO calculations are systematically overestimate cross-section in all rapidity

Central-forward dijets

One jet $|\eta|$ <2.8 Second jet 3< $|\eta|$ <5

HERWIG6, HERWIG++ agrees both with central and forward jets flow

HEJ shows the reasonable agreement with dijet data

All PYTHIA tunes and NLO contributions from POWHEG overestimate data

Valuable test of pQCD; possibility to constraint models

Jets properties: charged particles multiplicity, shape

$$\langle \delta R^2 \rangle (p_T) = \langle \delta \varphi^2 \rangle (p_T) + \langle \delta \eta^2 \rangle (p_T)$$

$$\langle \delta X_{jet}^2 \rangle (p_T) = \frac{\sum_{i \in jet} (X_i - \langle X \rangle)^2 \cdot p_{T^i}}{\sum_{i \in iet} p_{T^i}}$$
 X=\(\eta \text{or } \phi\)

Unfolding to particle jets is done with bin-to-bin and Tikhonov regularization method with the quasi-optimal solution.

Jets become narrower with increasing p_T and |y|

Agreement with predicted increase in the fraction of quark-induced jets at higher jet p₊ and |y|

Results gives impact to modeling PDFs, parton showering, fragmentation function

Jet properties: subjets

KT algorithm with parameter R=0.6 and a subjet resolution cutoff of r=10⁻³ was used for subjet reconstruction

dAgositini Multidimensional unfolding method was used to unfold distributions to the particle level jets.

The average subjet multiplicity decreases with increasing jet p_T Fraction of the quark-induced jets increases with jet p_T and |y| The best agreement is achieved with HERWIG++ (but see previous slide – HERWIG++ gives the wrong shape in η - ϕ plane)

High-pT photon production

Bin-to-bin unfolding is performed

Predictions from the NLO pQCD (JETPHOX)) agrees with Data except low p_T photons where NLO predictions tends to overestimated data.

Di-photon production

Unfolding to the particle level is done via Inverted matrix.

Annihilation: $qq \rightarrow \gamma \gamma$

Fusion: $gg \rightarrow \gamma \gamma$

Fragmentation: $qg \rightarrow \gamma \gamma q$

Calculation is done at NLO with DIPHOX, GAMMA2MC

The overall agreement in diphoton mass spectrum

The theoretical predictions underestimate the measured cross section for $\Delta \phi_{yy} < 2.8$

JHEP01(2012)133

Summary

- CMS measures both hard and soft QCD processes in the different phase space regions comparing with the wide range of LO and NLO calculations
- The data are, in general, in broad agreement with the perturbative predictions, but enough discrepancies are observed to keep us busy for a while.

Bonus material