Recent Results of ALICE: Heavy quarks in a Quark-Gluon Plasma at the LHC

- heavy quark production cross section
- energy loss of charm and beauty quarks in a QGP
- elliptic flow of heavy quarks
- charmonia and QGP

LHC Days in Split - Croatia, October 1-6, 2012

Particle identification in ALICE central barrel

Jet Quenching and Parton Energy Loss in QGP

jet: a parton (quark or gluon) from an initial hard scattering hadronizes into a collimated cone of hadrons typical cone angle < 1 rad leading hadron carries 10-20 % of jet momentum, rest softer

prediction: in dense partonic matter a jet is losing energy rapidly, order GeV/fm governed by a transport coefficient dependent e.g. on density of

color charge carriers

$$\hat{q} = rac{\langle k_{\perp}^2 \rangle}{\lambda}$$

mean free path $\,\lambda~>~1/\mu$.. range of screened gluon interaction

final jet carries information about the medium it traverses

in an analytic approximation (BDMPS)

$$\omega \frac{dI}{d\omega} \propto \alpha_s C_R \sqrt{\frac{\hat{q}L^2}{\omega}}$$

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Evolution of pQCD jet in the QGP medium

$$R_{AA}(p_T) = \frac{(1/N_{evt}^{AA}) d^2 N_{ch}^{AA}/d\eta dp_T}{\langle N_{coll} \rangle (1/N_{evt}^{pp}) d^2 N_{ch}^{pp}/d\eta dp_T}$$

see dedicated talk by A.O.Velasquez

K. Zapp, F. Krauss, U. Wiedemann arXiv:1111.6838 modeling of multiple scattering in the medium via infrared continued $2 \rightarrow 2$ scattering matrix element in pQCD and in-medium parton shower for further emissions

scale is set by final state particle multiplicity

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

dependence of hard scattering processes

Open charm - charm quarks in the quark gluon plasma

interest 2-fold:

transport coefficient for heavy quarks?

also energy loss of heavy quark - radiative energy loss should be suppressed due to large mass (1.2 GeV); in vaccum gluon radiation into angles $\theta \leq \frac{m_q}{E_q}$ suppressed (Dokshitzer and Kharzeev) and Casimir factor $C_q = 4/3$ vs $C_{gluon} = 3$

need total charm cross section for understanding of charmonia (ccbar states)

D⁰, **D**⁺ and **D**^{0*} in 7 TeV pp data

Measurements agree well with state of the art pQCD calculations

Charm and beauty via semi-leptonic decays

Inclusive electron spectrum from 2 PID methods: TPC-TOF-TRD and TPC-EMCAL

Johanna Stachel

Charm and beauty electrons compared to pQCD

- ALICE data complimentary to ATLAS measurement at higher pt (somewhat larger y-interval)
- good agreement with pQCD
- at upper end of FONLL range for p_t
- < 3 GeV/c where charm dominates

arXiv:1205.5423 ATLAS: PLB707 (2012) 438 FONLL: Cacciari et al., arXiv:1205.6344

a first try at the total ccbar cross section in pp collisions

- good agreement between ALICE, ATLAS and LHCb
- large syst. error due to extrapolation to low pt, need to push measurements in that direction
- data factor 2 ± 0.5 above central value of FONLL but well within uncertainty
- beam energy dependence follows well FONLL

Beauty cross section in pp and ppbar collisions

D meson signals in Pb Pb collisions

measurement: reconstruction of hadronic decays of D-mesons (ALICE) semi-leptonic decays into electrons (ATLAS, ALICE) " into muons (ATLAS, ALICE)

Suppression of charm at LHC energy

pp reference at 2.76 TeV: measured 7 TeV spectrum scaled with FONLL cross checked with 2.76 TeV measurement (large uncertainty due to limited luminosity)

energy loss for all species of D-mesons within errors equal - not trivial energy loss of central collisions very significant - suppr. factor 5 for 5-15 GeV/c

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Suppression of charm at LHC energy

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Suppression only for Strongly Interacting Hard Probes

photons, Z and W scale with number of binary collisions in PbPb – not affected by medium \rightarrow demonstrates that charged particle suppression is medium effect: energy loss in QGP

Azimuthal Anisotropy of Transverse Spectra

Fourier decomposition of momentum distributions rel. to reaction plane:

$$\frac{dN}{dp_t dy d\phi} = N_0 \cdot \left[1 + \sum_{i=1}^{N} 2v_i (y, p_t) \cos(i\phi)\right]$$

quadrupole component v_2 "elliptic flow" effect of expansion (positive v_2)

seen from top AGS energy upwards

Elliptic Flow of Charged Particles at LHC

Charm Quarks also Exhibit Elliptic Flow

within errors charmed hadron v_2 equal to that of all charged hadrons

Model Description of Energy Loss and Flow of D-mesons

both are determined by transport properties of the medium (QGP) simultaneous description still a challenge for some models

the original idea (Matsui and Satz 1986): implant charmonia into the QGP and observe their modification (Debye screening of QCD), in terms of suppressed production in nucleus-nucleus collisions with or without plasma formation – sequential melting

new insight (Braun-Munzinger, J.S. 2000): QGP screens all charmonia, but charmonium production takes place at the phase boundary, enhanced production at colliders – signal for deconfinement

Charmonia as probe of deconfinement at LHC

look at slice of 1 unit in rapidity - the causally connected region • ccbar formed in hard scattering event in early stage of the collision (t = $1/2m_c = 0.08$ fm)

 medium with high density of color charges screens strong interaction (Debye screening, Satz/Matsui 1986)

charm quarks diffuse, loose
 energy, thermalize – see D-meson
 R_{AA} and v₂

• once T_c is reached, system hadronizes and D-mesons and maybe ccbar bound states form

Quarkonium as a Probe for Deconfinement at the LHC the Statistical (re-)Generation Picture

charmonium enhancement as fingerprint of deconfinement at LHC energy only free parameter: open charm cross section in nuclear collision Braun-Munzinger, J.S., Phys. Lett. B490 (2000) 196 and Andronic, Braun-Munzinger, Redlich, J.S., Phys. Lett. B652 (2007) 659

Decision on Regeneration vs. Sequential Suppression from LHC Data

J/psi spectrum and cross section in pp Collisions

10 d²σ_{J/ψ} /dp_Tdy (μb/GeV/c) ອີ dơ_{J/ψ} /dy (μb) ALICE. e⁺e pp ∖s=7 TeV pp ∖s=7 TeV ALICE, μ⁺μ⁻ 9 CMS 8 ★ LHCb 6 5 4 ALICE e⁺e⁻, |y|<0.9 3 ▲ ALICE μ⁺μ⁻, 2.5<y<4.0</p> CMS, |y|<1.2 10⁻² 2 ATLAS, |y|<0.75 LHCb, 2.5<y<4.0 open: reflected 1111111111 0 2 8 10 12 0 6 5 $p_{_{T}}$ (GeV/c)

good agreement between experiments
complementary in acceptance: only ALICE has acceptance below
6 GeV at mid-rapidity

ALICE PRL 704 (2011) 442 arXiv:1105.0380

measured both at 7 and 2.76 TeV <u>open issues:</u> statistics at mid-rapidity polarization (biggest source of syst error)

Reconstruction of J/psi in PbPb via mu+mu- and e+e- decay

most challenging: PbPb collisions

in spite of significant combinatorial background

(true electrons, not from J/ ψ decay but e.g. D- or B-mesons) resonance well visible

J/psi in PbPb collisions relative to pp

- nearly flat over large centrality range
- indication of rise for most central and mid-rapidity

J/psi production in PbPb collisions: LHC relative to RHIC

Johanna Stachel

RUPRECHT-KARLS-UN

Energy Density

J/psi and Statistical Hadronization

in AA collisions: strong indication of J/ψ regeneration

- production in PbPb collisions at LHC consistent with deconfinement and subsequent statistical hadronization within present uncertainties
- main uncertainties for models: open charm cross section, shadowing in Pb
- need to precisely measure charm cross section in PbPb and pPb collisions

p_t Dependence of **R**_{AA}

 $R_{\rm AA}$ 1.4 ALICE Preliminary, Pb-PbVs_{NN} = 2.76 TeV, L≈ 70 µb⁻¹ 1.2 Inclusive J/\u03c6, centrality 0%-90%, 2.5<y<4 global sys.= ± 7% Transport Model (X, Zhao & al., NPA 859 (2011) 114) Total with shadowing rimordial J/ψ 0.8 Regenerated J/w Total without shadowing --- Primordial J/ψ 0.6 T ļ ----- Regenerated J/v 0.4 0.2 0 2 З 6 1 5 7 n 8 p_t (ĠeV/c) ALI-PREL-16823 JUIIIIII DUUVIIVI

relative yield larger at low p_t in nuclear collisions good agreement with CMS at high p_t

statistical hadronization only expected for charm quarks thermalized in the QGP p_t dependence in line with this prediction in CMS only suppression

Rapidity Dependence of J/psi RAA

comparison to shadowing calculations:
at mid-rapidity suppression could be explained by shadowing only
at forward rapidity there seems to be additional suppression
need to measure shadowing

for statistical hadronization J/ ψ yield proportional to N_c² higher yield at mid-rapidity predicted in line with observation

Elliptic Flow of J/psi

charm quarks thermalized in the QGP should exhibit the elliptic flow generated

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Elliptic Flow of J/psi vs pt

expect build-up with p_t as observed for π, p. K, Λ, ... and vanishing signal for high p_t region where J/ψ not from hadronization of thermalized quarks
 observed

J/psi flow compared to models including (re-) generation

 v_2 of J/ ψ consistent with hydrodynamic flow of charm quarks in QGP and statistical (re-)generation

Conclusions

- Charm and beauty and J/spi cross section and spectra in pp in good agreement with pQCD predictions
- energy loss of partons in QGP: charm quarks loose energy nearly as effectively as gluons and light quarks
- heavy quarks also appear to thermalize
 need total cross section and charm quark observables at low p_t
- J/ψ: well on the way towards proof of deconfinement thermalized c-quarks form charmonia at hadronization, there charmonia exhibit collective elliptic flow
 need complete story of all charmonia and bottomonia (down

need complete story of all charmonia and bottomonia (down to $p_t=0$)

backup

Unified Description of Different Regimes

Production of charm quarks and charmonia in hadronic collisions

- charm and beauty quarks are produced in early hard scattering processes
- most important Feynman diagram: gluon fusion
- formation of quarkonia: with about 1%
- probability the c and cbar form ³1S state = J/ψ requires transition to a color singlet state
 not pure perturbative QCD anymore, some
 modelling required
 CEM Color Evaporation Model
 CSM Color Singlet Model

now reasonably successful

Measurements agree well with state of the art pQCD calculations

Charm and beauty via semi-leptonic decays

Inclusive electron spectrum from 2 PID methods: TPC-TOF-TRD and TPC-EMCAL

Johanna Stachel

Charm and beauty electrons compared to pQCD

- ALICE data complimentary to ATLAS measurement at higher pt (somewhat larger y-interval)
- good agreement with pQCD
- at upper end of FONLL range for p_t
- < 3 GeV/c where charm dominates

arXiv:1205.5423 ATLAS: PLB707 (2012) 438 FONLL: Cacciari et al., arXiv:1205.6344

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Suppression of charm at LHC energy

pp reference at 2.76 TeV: measured 7 TeV spectrum scaled with FONLL cross checked with 2.76 TeV measurement (large uncertainty due to limited luminosity

energy loss for all species of D-mesons within errors equal - not trivial energy loss of central collisions very significant - suppr. factor 5 for 5-15 GeV/c

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Suppression of charm at LHC energy

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Model Description of Energy Loss and Flow of D-mesons

both are determined by transport properties of the medium (QGP) simultaneous description still a challenge for some models

AdSxS5 string theory does not describe charm quark energy loss and elliptic flow at LHC

Decay muons from heavy flavor mesons

Suppression only for Strongly Interacting Hard Probes

photons, Z and W scale with number of binary collisions in PbPb – not affected by medium \rightarrow demonstrates that charged particle suppression is medium effect: energy loss in QGP

J/psi from B-decays in pp collisions

- J/psi from B-decays for pt > 1.3 GeV/c at mid-rapidity - unique at LHC
- obtain prompt J/psi spectrum

arXiv:1205.5880 FONLL: Cacciari et al., arXiv:1205.6344

Johanna Stachel

ELBERG

Beauty cross section in pp and ppbar collisions

J/psi from B-decays in pp collisions

- J/psi from B-decays for pt > 1.3 GeV/c at mid-rapidity - unique at LHC
- obtain prompt J/psi spectrum

arXiv:1205.5880 FONLL: Cacciari et al., arXiv:1205.6344

Johanna Stachel

ELBERG

Suppression of higher Upsilon states in CMS

in thermal models: expect suppression due to Boltzmann factors

from CMS cross section measurements: $(Y(2S) + Y(3S))/Y(1S)_{PbPb} = 0.14 + 0.08 - 0.07$ vs thermal model at T=170 MeV: 0.046 ok within the current uncertainties

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Suppression of Upsilon States 2011 data

centrality integrated:

2S/1S PbPb relative to pp 0.21+-0.07+-0.02 3S/1S " < 0.1 95% C.L. higher upsilon states expected to melt earlier because of larger radius but also: statistical population much reduced beyond pp value due to Boltzmann factors