

Search for resonances with leptons (in CMS)

Julien Caudron, on behalf of CMS Collaboration

Aachen RWTH 3A

Introduction

This talk is about:

- Resonances in Exotic physics (= BSM physics without SUSY)
 - → does not include non resonant physics
 does not include subjects of other talks:
 Heavy neutrino, Long-lived particles, ...
- with leptons
 - → does not include taus
 focuses on high energy leptons in the final state

Latest Public CMS Exotica results:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Outline:

- Overview of exo models
- Leptons in Exotica
- Z' study

- W' study
- Other studies (ρ_{TC} , boosted Z⁰, ℓ^*)
- Summary and conclusion

Search for resonances with leptons

New bosons: motivated by: GUT \rightarrow additional U(1) or SU(2), Extra dimensions, ...

- **Z-like:** Sequential SM : Z'_{SSM} with coupling similar to SM
 - super-string inspired E_6 GUT: Z'_{μ}
 - other models (KK Graviton, ...)

W-like:

- **(e:** Sequential SM : W'_{SSM} with coupling similar to SM (but W' \rightarrow WZ suppressed)
 - split Universal Extra Dimension: W'_{κκ} is n=2 KK excited state, for different split-UED parameters (bulk masses μ and radius R of the folded 5th dim)
 - Technicolor: ρ_{TC} , which decays in WZ (depending of the masses of ρ_{TC} and π_{TC}) • ...

Compositeness:

General effective Lagrangian, for a compositeness scale Λ New coupling: f, f', f_s , usually set to f=f'=1, $f_s=1$. Final parameters: M and Λ Excited leptons: ℓ^* , and excited quarks: q^*

Other models (not discussed in this talk):

4th generation, leptoquark, ...

High energy leptons

Search for resonances with leptons

Leptonic decay of massive particles \rightarrow isolated leptons with **high energy**

High energy muons:

- muons with $p_T > 100 \text{ GeV} \rightarrow \text{radiative losses}$, no longer MIP affects the trajectory (and therefore the p_T)
 - → *tune P* (or "cocktail") algorithm is used for $p_T > 200$:

affects the isolation \rightarrow tracker isolation only

• cosmic muons: but easily rejected (di- μ angle, |d₀|)

High energy electrons:

For high p_{τ} : resolution of the ECAL > resolution of the Tracker Track for direction and origin, where the p_{τ} resolution matters less

 \rightarrow the charge is not always used

HEEP electrons, based on standard selection but optimized for $p_{\tau} > 100$

Z' study

EXO-12-015 PAS Publ. 2012 Data, 4fb⁻¹ (+ 5fb⁻¹)

Selection:

ee: two isolated electrons (3.6fb⁻¹), $\mu\mu$: two isolated opposite charge muons (4.1fb⁻¹)

Main observable: dileptonic invariant mass m(ll)

Backgrounds:

Drell-Yan Z/ γ^* : irreducible background, from simulation, normalized with the data in the Z peak region m($\ell\ell$) shape parametrized for m > 200 GeV

- tt, (tW, diboson) : lower background (factor ~0.1 w.r.t. DY), from simulation (± 15% unc.) contribute to eµ channel, used to check: the MC / data comparison misidentification
- misid. leptons : from data-driven estimation μ: low (but can be evaluated with same-sign requirement) e: (W+jet, y+jet, multi-jet) misidentification rate (FR) method

Limits:

$$\rightarrow$$
 upper limit on $R_{\sigma} = \frac{\sigma(pp \rightarrow Z' + X \rightarrow \ell\ell + X)}{\sigma(pp \rightarrow Z + X \rightarrow \ell\ell + X)}$

in ee and $\mu\mu$ channels and $\sqrt{s} = 7 + \sqrt{s} = 8$

Z' study

EXO-12-015 PAS Publ. 2012 Data, 4fb⁻¹ (+ 5fb⁻¹)

Upper limit:

$$R_{\sigma} = \frac{\sigma(pp \to Z' + X \to \ell\ell + X)}{\sigma(pp \to Z + X \to \ell\ell + X)}$$

shape analysis, with signal according to Breit-Wigner + Gaussian

W' study

EXO-12-010 PAS Publ. 2012 Data, 3.7fb⁻¹

Selection:

e / μ : one isolated electron / muon, add. criteria based on missing E_{τ} : $0.4 < p_{\tau}(\ell) / E_{\tau}^{miss} < 1.5$ and $\Delta \varphi_{\ell \nu} > 0.8 \pi$

Main observable:
$$M_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\ell} \cdot E_{\rm T}^{\rm miss}} \cdot (1 - \cos \Delta \phi_{\ell,\nu})$$

Backgrounds:

irreducible W $\rightarrow \ell v$ + additional lower bkgd: QCD multijet, tt, DY, diboson background M_T parametrized as $f(m; a, b, c) = a / (m + b)^c$ method A: fitted in data, based on the 200 < M_T < 600 sideband method B: fitted from simulation, but normalized with data in the 200 < M_T < 500 region

Limits:

- Limits on $\sigma \times BR$, for $e + \mu$ with $\sqrt{s} = 8$
- Limits on $\sigma_{excl.}$ / σ_{ssm} , for e + μ with $\sqrt{s=7} + \sqrt{s=8}$ (but does not improve a lot the mass limit)
- \rightarrow limits on split-UED parameters, for e, μ , e + μ with \sqrt{s} = 7

W' study

EXO-12-010 PAS Publ. 2012 Data, 3.7fb⁻¹

Yield:

muon channel

electron channel

W' study

EXO-12-010 PAS Publ. 2012 Data, 3.7fb⁻¹

Results:

no excess, \rightarrow 95% CL exclusion additional optimized cut on M_T Bayesian limits (counting exp.) $\begin{array}{ll} M(W'_{SSM}): &> 2.85 \ \text{TeV} \\ M(W_{kk})(\mu = 0.05): &> 1.4 \ \text{TeV} \\ M(W_{kk})(\mu = 10): &> 3.3 \ \text{TeV} \end{array}$

W', $\rho_{TC} \rightarrow WZ$

EXO-11-041 going for PRL 2011 Data, 5fb⁻¹

Excited lepton

EXO-11-034 going for PLB 2011 Data, 5fb⁻¹

Boosted Z^o

EXO-11-025 going for PLB 2011 Data, 5fb⁻¹

Several model predicts boosted Z^0 . Here, the analysis focuses on q^*

Selection:

2 opp. charge isolated muons with m($\mu\mu$) ϵ [60, 120]

Boosted Z^o

EXO-11-025 going for PLB 2011 Data, 5fb⁻¹

Several model predicts boosted Z^0 . Here, the analysis focuses on q^*

Summary

Conclusion

Numerous exotica analyses with leptonic final state

Leptonic final statesare well reconstructed in CMS (robust against pu, ...)are clear signatures, with low backgroundgive the best limits for Z' and W'are complementary to hadronic final states (q*)

No excess has been observed, but limits have been stated

LHC: current public results: 2011, \sim 5fb⁻¹ 2012, \sim 5fb⁻¹ expected: \sim 25fb⁻¹

Backup slides

Leptons reconstruction and selection

Usual selection (mainly based on Z' study):

- **Triggers:** For muon: Single muon trigger (maximum: $p_T > 40$ GeV, $|\eta| < 2.1$)
 - For dielectron: Double electron trigger (E_T(cluster) > 33 GeV)
 - For single electron: Single electron trigger (E_T(cluster) > 85 GeV)
- **Kinematics:** p_T and $|\eta|$ consistent with triggers

(muon: $p_T > 45$ GeV, $|\eta| < 2.1$, electron: $p_T > 35$ GeV, $|\eta| < 2.4$ without [1.442,1.560])

Identification:

- Track of the lepton consistent with the collision point ($|d_0| < 0.2 \text{ cm}$)
- For muon:
 - cosmic muon rejection (dimuon: angle < pi-0.02 rad, single muon: stronger |d₀| cut)
 - good track quality (≥ 1 hit in pixel tracker, ≥ 9 hits in silicon tracker, ≥ 2 segment in muon stations)
- For electron:
 - good correspondence track ECal cluster ($\Delta\eta$, $\Delta\phi$)
 - energy deposit electron-like (E_{ECal}/E_{HCal}, shower shape variables)

Isolation:

- For muon: relative isolation in the tracker in a 0.3 cone (robust again Pile-Up)
- For electron: isolation in the tracker and the calorimeter in a 0.3 cone (corrected for Pile-Up)

Electrons efficiency and resolution

Muons performances

arXiv:1206.4071

Z' to taus

EXO-11-031 going for PLB 2011 Data, 5fb⁻¹

Z' 2011

EXO-11-0

2011 Data, 5fb⁻¹

rough comparison

	cms with leptons	cms with hadrons	atlas
M(Z' _{SSM}):	> 2.59	excl [1.0, 1.45]	> 2.49
M(Z' _u):	> 2.26		> 2.09
M(G _{KK}) (c=0.10)	: > 2.14		> 2.16
M(W')	> 2.85	excl [1.0, 1.9]	> 2.55
Μ(ρ _{τc})	excl [0.18, 0.9	4]	> 0.85
M(q*), f _s != 0	> 1.94	excl [0.6, 3.27]	> 3.7 (had)
M(q*), f _s = 0	> 2.18	-	
M(l*)	> 1.9		> 1.9-2.0
M(t')	> 0.56	> 0.69	> 0.66
M(b')		> 0.61	

dileptonic \overline{t} 't' study

EXO-11-050 10.1016/j.physletb.2012.07.059 2011 Data, 5fb⁻¹

Selection: ť two opp. charge isolated leptons (ee, $\mu\mu$, $e\mu$) Z veto, $E_{\tau}^{miss} > 50 \text{ GeV},$ add. criteria: at least 2 b-jets, min. of the 4 lept.–b-jet inv. mass $(M_{\mu}^{min}) > 170 \text{ GeV}$ $t' \rightarrow bW$ assumed to be 100% Events/(34 GeV/c²) σ (pp \rightarrow t^T) (pb) CMS, 5.0 fb⁻¹ at $\sqrt{s}=7$ TeV Data Events with ee/µµ/eµ CMS, 5.0 fb⁻¹ at $\sqrt{s}=7$ TeV 10⁴ Theory (HATHOR) [25] tt (dileptonic) 95% CL expected limits 10³ 95% CL observed limits Other backgrounds Expected limits \pm 1 σ $t'\overline{t'}$, M. = 450 GeV/c² Expected limits \pm 2 σ 10² **Signal Region** 10 1 CLs limits (counting exp.), M(t') > 557 GeV 10^{-1} 350 500 550 400 450 600 100 0 200 300 $M_{t'}$ (GeV/c²) M_{lb}^{min} (GeV/c²)

October 4th 2012 - LHCDays Split 2012

Julien Caudron, Aachen RWTH 3A 26/18