

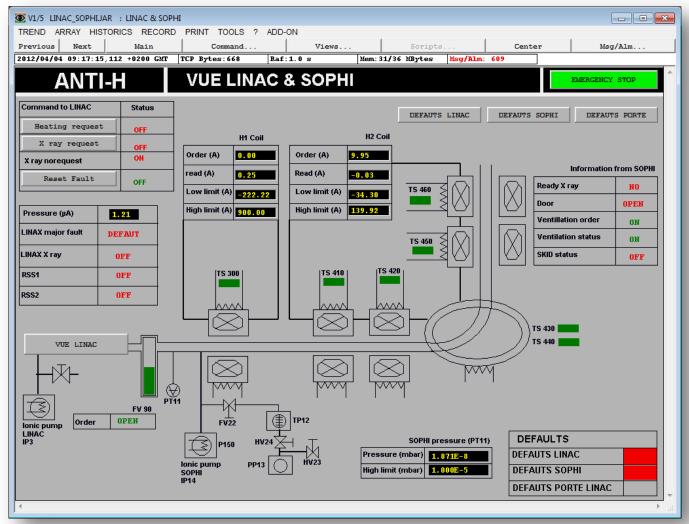
Control Command Overview GBAR Collaboration Meeting

Paul Lotrus CEA/DSM/Irfu/SIS

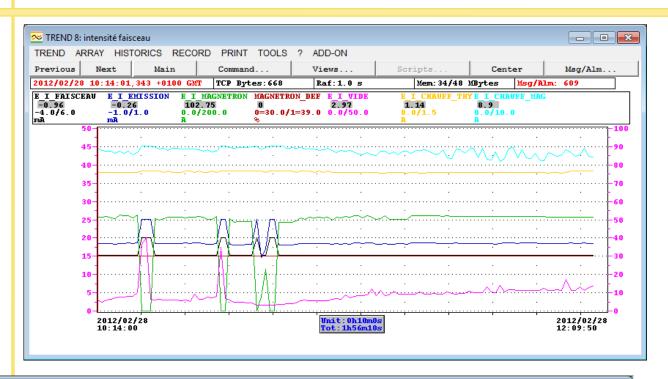
Control Command

Recommendations

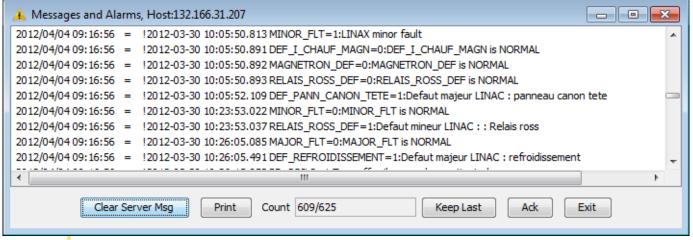
Design Needs



- Integrated control command functions:
 - Global overview
 - Automation (measures, procedures)
 - Safety
 - Alarm
 - Archive and shared data
 - Communication with ELENA
 - Remote debug
 - Time



Supervision


Operational overview

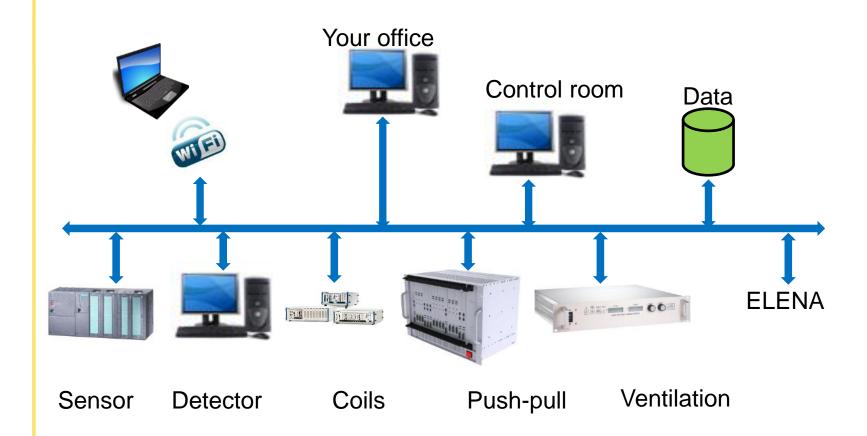
Data storage

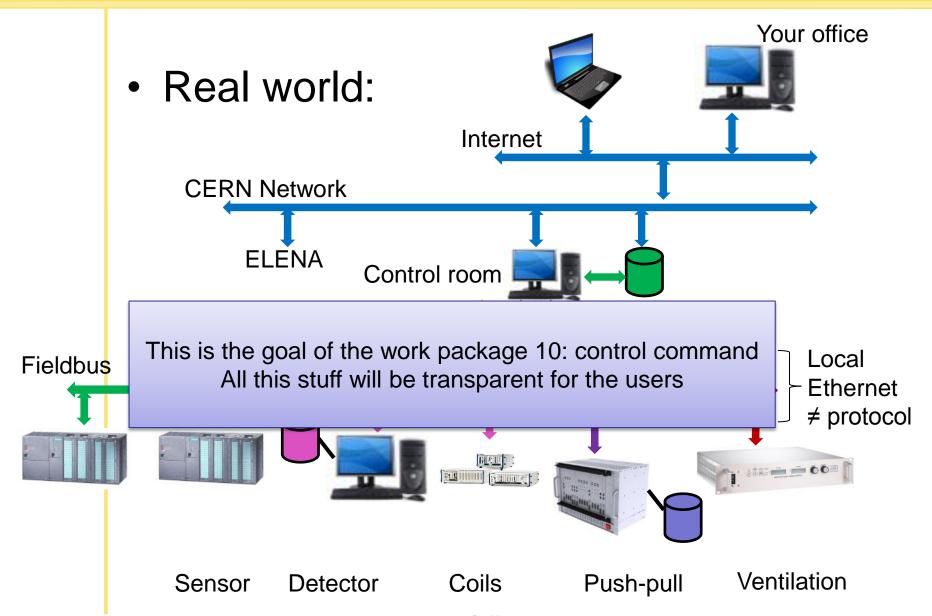
Error identification and safety issues

2 hardware worlds:

Slow control: vacuum, push-pull, coils

 PLC (Programmable Logic Controllers): robust, modularity, long term, industrial


- Fast control (DAQ): MCP, ...
 - PC: short term, technology changing, virus
 - PXI, VME: middle term, modularity, expensive



Perfect communication world

18/04/2012 CEA DSM Irfu SIS LDISC Paul Lotrus

18/04/2012 CEA DSM Irfu SIS LDISC Paul Lotrus

Control Command

Recommendations

Design Needs

 Recommended solution: CERN hardware compatible

- Siemens PLC

PCI express

- VME

Communication

- Interface with devices for the slow control: 0-10V, 4-20mA, Profibus or Profinet
- Avoid: protocol with material interface like
 RS232, GPIB, USB, Ethernet, ...
- If you buy a non compatible instrument:
 - Specific gateway: 2 month + hardware
 - More bugs and more difficult to understand

Control command

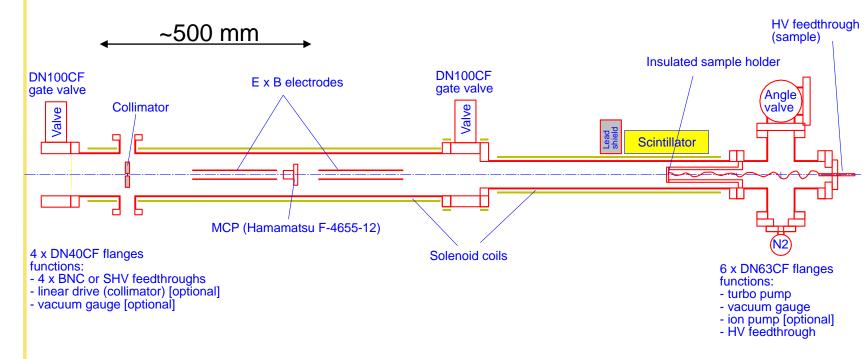
Gateway between powers and supervision (slow, not all functionalities)

8 powers Hameg

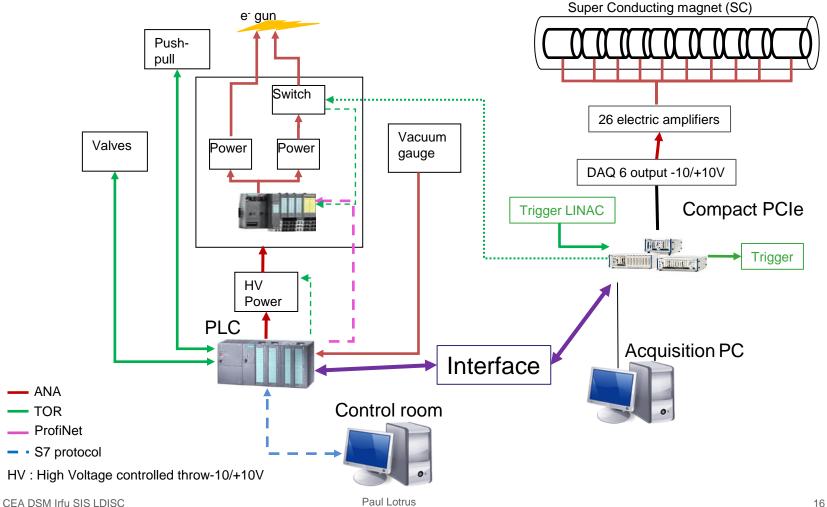
Control Command

Recommendations

Design Needs


- Roadmap Gbar control command proposed:
 - Understand the experiment's behavior and performance
 - Define a global system architecture
 - Define control command tests
 - Integrate the control command interface in each subsystem
 - Test the subsystem control command
 - Installation at CERN

- To design the control command, we need answers to the following questions:
 - What will be automated?
 - What is the automation process?
 - Does the system need information from another one?
 - How do we communicate with the different elements?


- One control command contact person per subsystem in charge of:
 - Object design

– Instrumentation synoptic: agreement between WP and WP control command

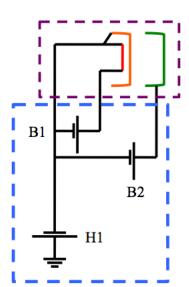
Gbar control command design needs

One list of the I/O for the slow control

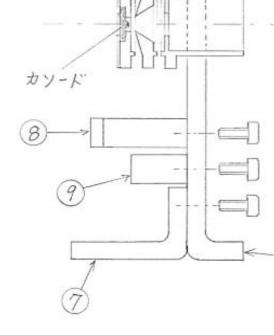
One list of the I/O for the fast control

Туре	Element	fonction	intervalle	nombre	total nombre I/O
туре	Haute tension, pre-decelerator	lecture tension appliquée	0-10 V	4	16
I -	•				
I -	Haute tension, decelerator	lecture tension appliquée	0-10 V	1	
I ana	Haute tension, post decelerator	lecture tension appliquée	0-10 V	1	
	Haute tension, quad doublet lens	lecture tension appliquée	0-10 V	4	
	Haute tension, quad triplet lens	lecture tension appliquée	0-10 V	6	
	Haute tension, pre-decelerator	commande tension appliquée	0-10 V	4	16
	Haute tension, decelerator	commande tension appliquée	0-10 V	1	
O ana	Haute tension, post decelerator	commande tension appliquée	0-10 V	1	
	Haute tension, quad doublet lens	commande tension appliquée	0-10 V	4	
	Haute tension, quad triplet lens	commande tension appliquée	0-10 V	6	
	Haute tension, pre-decelerator	lecture interlock		4	17
	Haute tension, decelerator	lecture interlock		1	
I logique –	Haute tension, post decelerator	lecture interlock		1	
1 logique	Haute tension, quad doublet lens	lecture interlock		4	
	Haute tension, quad triplet lens	lecture interlock		6	
	Switch HT	lecture interlock		1	
	Haute tension, pre-decelerator	commande interlock		4	17
	Haute tension, decelerator	commande interlock		1	
Ologique	Haute tension, post decelerator	commande interlock		1	
O logique –	Haute tension, quad doublet lens	commande interlock		4	
	Haute tension, quad triplet lens	commande interlock		6	
	Switch HT	commande interlock		1	

18/04/2012 CEA DSM Irfu SIS LDISC Paul Lotrus


 Describe the behavior of the slow control, or/and fast

Define the command constraints (range):


frequency, amplitude, duration

Penning trap e- gun

	g a.p - g			
1. System description				
1.1 Mechanic				
1.2 Electric				
1.3 Voltage				
2. Required equipment				
2.1 Electric				
2.1.1	Electric power B1	5		
2.1.2	Electric power B2	5		
2.1.3	Electric power H1	6		
2.1.4	Insulation box	6		
2.2 Mechanic				
2.2.1	Insulation box	6		
2.2.2	Cathode support	6		
3. Control command				
3.1 Electric Power				
3.2 Push-pull				



Paul Lotrus

Gbar control command design needs

H detection

- Questions for CERN and ELENA:
 - NTP, SMTP server
 - Archiving
 - Remote access
 - Maintenance: hardware and software
 - Interface with ELENA control command (hardware and software)
 - Timing system

Thanks for your attention