p-bar d-cel: keV antiproton pulses

David Lunney CSNSM (IN2P3-CNRS) Université de Paris Sud, Orsay

- introduction and concept
- p-bar d-cel simulations
- ISOLTRAP@ISOLDE
- consequences on GBAR layout

With crucial help from:

V. Manea, S. Cabaret, P. Dupré, S. Dephine (CSNSM) and Robert Wolf (U. Greifswald)

deceleration and pulsed drift tube: concept

deceleration and pulsed drift tube: simulation

kinetic energy / eV

SIMION simulations by Vladimir Manea

Transport from decelerator to reaction chamber (GIOS)

Full simulations of antiproton deceleration and focusing

- One single simulation of the 3 m path of the ions from the entrance to the deceleration setup to the injection into the positronium chamber.
- Optimization of the deceleration and focusing voltages, as well as of the setup geometry, for a maximum transport efficiency through the positronium chamber (preliminary value 15%).

SIMION simulations by Vladimir Manea

prototype instrument at the CSNSM, Orsay (March 2012)

ATTENTION TENSION DAWAR ò

0

ISOLTRAP spectrometer at ISOLDE (2 Penning, 1 Paul, 1 MR-tof trap)

60-kV, 1-kHz pulsed drift-tube switch

Exotic nuclides and anti-matter major difference: buffer gas!

HV-switch circuit

New HV-switch parts

→ Maximum power dissipation at around 1200Hz switching frequency

close to gaussian shape

peak shape with new setup

HV-switch present status and performance

HV-switch Safety

attached to cooper box grounding

GBAR layout issues

Extraction from ELENA in a short straight section

25 January 2012 CERN

Transfer line WS / Pavel Belochitskii 20

Nomenclature de snoi05cia00ia

5

2

Nunêro	Quantité	Référence	Nomenclature
1	1	sno106c1p002a	liaison doublet/doublet
2	2	sno106c1p001a	doublet
3	1	sno106c1p003a	soufflet
	1	Ensemble Vanne DN100 man	
Nomena)	lature de	Ensemble Vanne DN100	nan
Numéro	Quantité	Référence	Homenolature
4	1	Vanne DN100	

CF150-100 Vanne

194

Récapitulatif sur sno105c1a001a Pièces différentes : 5 Total des pièces : 7				
Quantité	Référence			
1	sno106c1p002a			
2	sno106c1p001a			
1	sno106c1p003a			
1	Vanne DN100			
2	CF150-100 Vanne			

module 2 doublets + tube + soufflet + vanne

	Désignation : module 2 doublets + tube + soufflet + vanne	Contre de Spectrumetria destina par : Reclánica et Spectrumétria Stéphane Câldér de Manue Câssi
	référence fichier : sno106c1a001a	Fan Gaerpen Classecteu Brâner pite Paris, Sed
\neg	Telérances générales : - Longaure :	CSNSM 1441. : 00 22 (0) 1 60 14 12 21
	- brait de surfices : Re G.4	nteghara. cabaratik mana.in2p2.fr
	Poide (kg) Twille : Cohelle :	Ce document ent la propriété de CSNSM et ne peut pue d'une stillais mans l'accard écrit de son directeur. This dimming is the property of the CSNSM and can wat
	XXX A3 5 Dits 6'erregistreamt : 10/s/2012	be used mithout the writtee apprend of his director.

H⁺ Production

GBAR – reaction chamber trajectories

Decelerator

- Pulsed drift scheme: start from working instrument (60 kV)
- First simulations show phase space conserved
- •transmission not disastrous (35%)

Layout issues

- •Question: are H+, p-, e+ beams interesting for others?
- •Extraction and transport part of ELENA (i.e. resp. CERN)?
- Positioning of equipment...

different extraction segment? rotating ELENA? increasing ELENA kicker-bender angle? adding multipoles?

ELENA layout in AD Hall

25 January 2012 CERN

Transfer line WS / Pavel Belochitskii

Drawbacks:

- Repetition rate max. 3Hz
- dropping HVcage potential
- (Leakage current issue)

- Stable high-voltage potential
- Safety, Reliability

Challenges:

- Power dissipation: up to 600W
- RF-noise