New positron trapping scheme for GBAR experiment

Pierre Dupré

CSNSM Orsay

18 April 2012

1/29

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Overview

- 2 RIKEN accumulation technique
- 3 Positron accumulation with a pulsed beam

Ps target production Penning-Malmberg trap

Positronium target production

- $\bar{\mathrm{H}}^+$ production uses a positronium cloud (Ps $[\mathrm{e^+e^-}])$
- $\bullet~{\rm Ps}$ cloud with a density $10^{12}~{\rm Ps}/{\rm cm}^{-3}$
- Ps cloud is created with a $e^+ \rightarrow Ps$ converter ($\epsilon \sim 40\%$) \rightarrow Requires a pulse of few 10¹⁰ e⁺, with a timewidth less than $\tau_{Ps} = 142$ ns

Slow e^+ source : highest flux ${\sim}10^9~e^+/s~\to$ Positron accumulation in a Penning-Malmberg trap

Ps target production Penning-Malmberg trap

Penning-Malmberg trap

Electromagnetic trap, axisymmetric shape. Confined positrons behave as a non neutral plasma.

Dimensions : ~ 23 electrodes $R_{elec} = 2$ cm $L_{elec} = 2$ cm

Radial confinement

Uniform magnetic field along the trap axis, $B_z = 5 \text{ T}$ Axial Confinement

Harmonic potential well produced by cylindrical electrodes $\phi^{\text{ext}}(r,z) = A(2z^2 - r^2)$

Different accumulation techniques

- Slow positron (eV) accumulation from a continuous beam.
- Radioactive β^+ source : ²²Na coupled with a Neon moderator $\varepsilon_{mod} \sim 0.5 \ \% \ (\sim 500 \ \text{keV} \rightarrow \text{eV})$

Accumulation technique	Accumulati	on rate (e ⁺ /s/mCi)	$Max\xspace$ amount of e^+
RIKEN (Oshima et al.)	$3.6 imes10^2$	~0.2 %	10 ⁶
ATHENA (Jørgensen et al.)	$7.6 imes10^3$	\sim 4 %	10 ⁹

RIKEN method is able to reach high accumulation efficiencies using a e⁺ pulsed beam

Accumulation techniques comparison

ATHENA

- Two traps
- Positron cooling in the first trap with a buffer gas
- $\bullet~$ Positron lifetime $\sim~100~s$
- Injection in the second trap (UHV)

RIKEN

• Only one trap

- e⁺ moderation with a tungsten cristal (reflexion mode)
- e⁺ cooling in an electron plasma and H₂⁺ plasma by Coulomb interaction.

RIKEN accumulation technique :

Positron injection in the trap :

7/29

RIKEN accumulation technique :

Positron moderation with W cristal :

8/29

RIKEN accumulation technique :

Positron cooling in the electron plasma by Coulomb collisionnal damping

 ΔE depends on :

- the electron plasma density *n*
- the distance travelled by e⁺ in the electron plasma
- the kinetic energy of e⁺ in the electron plasma

 $\rightarrow V_W - V_p$

Particle-plasma interaction

Coulomb collision of positrons in an electron plasma (M. A. Leontivich, K. Miyamoto) :

$$\frac{dv_{\parallel}}{dt} = -\frac{v_{\parallel}}{\tau_{coll,e}}$$

 \rightarrow Collision time $\tau_{\mathit{coll},\mathit{e}}$:

$$\tau_{coll,e} = \frac{8\pi\varepsilon_0^2\mu mv^3}{ne^4\ln\Lambda} , \ \mu \text{ reduce mass}$$
$$\ln\Lambda = \ln\left(\frac{\lambda_D}{b_{90}}\right) , \ b_{90} = \frac{e^2}{4\pi\varepsilon_0}\frac{1}{mv^2} , \ \lambda_D = \sqrt{\frac{\varepsilon_0k_BT}{ne^2}}$$

Cooling until electron thermal velocity, T \sim 0.01 eV.

RIKEN accumulation technique :

Positron cooling in the H_2^+ cloud :

Confinement rate divided by 10 without ions

э

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

Upgrade of the RIKEN technique

- Only one Penning-Malmberg trap
- Slow positron pulsed beam (SACLAY prototype : 200 Hz, timewidth : 4 μ s)
- Tungsten moderator removed
- Positrons are accumulated pulse by pulse
- Positron pulses are confined between two potentiel barriers B_1 et B_2 in the 5T region
- Positron cooling by Coulomb collisionnal damping in an electron plasma

Description Simulation

 B_1 is lowered during positron injection

Description Simulation

 B_1 is rised up before the first roundtrip of the pulse time of first round trip ${\sim}100~\text{ns} \rightarrow$ time bunching of e^+ pulses

Description Simulation

Positrons are cooled down by Coulomb collisionnal damping during their several roundtrips in the electron plasma

Description Simulation

Positrons have to be cooled down enough before opening B_1 for the injection of the next pulse

Description Simulation

The depth of the second well is increased during positron accumulation, until ${\sim}1000$ V for ${\sim}10^{10}~e^+$

(ロ) (部) (言) (言) (言) (で) (17/29)

Description Simulation

Overall efficiency

The overall trapping efficiency can be divided in 3 efficiencies :

• Transport efficiency in the magnetic mirror :

 $\rightarrow \varepsilon_t = \frac{\text{number of } \mathbf{e}^+ \text{ reaching the trap region}}{\text{number of } \mathbf{e}^+ \text{ in the bunch}}$

• Bunching efficiency :

 $\rightarrow \varepsilon_{b} = \frac{\text{number of } e^{+} \text{ confined in the trap region once the gate is raised}}{\text{number of } e^{+} \text{ reaching the trap region}}$

• Cooling efficiency :

 $\rightarrow \varepsilon_{c} = \frac{\text{number of } e^{+} \text{ cooled down enough when } B_{1} \text{ is lowered}}{\text{number of } e^{+} \text{ confined in the trap region once the gate is raised}}$

Description Simulation

Transport efficiency ε_t

- reflexion in the magnetic field gradient if $\frac{E_{\perp}}{E_{\parallel}} > \frac{B_L = 10 \text{mT}}{B_T = 5 \text{T}}$
- reflexion at the level of the potential barrier B₁ in the magnetic field gradient : V_b = -300 V

•
$$\varepsilon_t = 76\%$$

Transport efficiency strongly depends on the transverse energy of positrons ($E_{\parallel} \sim 1 \rm \, keV)$

19/29

Description Simulation

Bunching efficiency ε_b

Pulse timewidth at the source $\sim 4 \ \mu s$ Time of the first roundtrip $\sim 100 \ ns$

At the level of the source, the positrons are accelerated progressively with time in the burst to compensate for their late production.

Description Simulation

Bunching efficiency ε_b

- $\varepsilon = 92\%$ with the Saclay bunching method ($\sigma_{E_{\parallel}}=0.3 \text{ eV}$)
- Bunching efficiency strongly depends on the longitudinal energy spread
- Bunching method for Saclay needs a long distance between the source and the trap (L>10 m), it seems incompatible with our place in the AD facility.

Description Simulation

Cooling efficiency ε_c

The confinement time t_c is the time to cool down a positron until its confinement between the two potential barriers, when the B₁ is lowered ($V_b = -300 \text{ V}$) \rightarrow time when $E_{\parallel} < e(V_b - V_p(r))$ in the electron plasma \rightarrow Maximal t_c defines the injection frequency

 t_C depends on :

- the electron plasma parameters (density, dimension, temperature)
- the difference between V_b and the potential in the plasma $V_p(r)$
- the initial energies $(E_{\parallel}, E_{\perp})$ in the plasma
- the time of each roundtrip
- the effective time in the electron plasma during each roundtrip
- the r position of the positron $(V_p \text{ and } n \text{ depend on } r!)$

Description Simulation

Electron plasma parameters

Parameter	symbol	value
electron number	Ν	$9 imes 10^9$
density (r=0)	п	$\sim 10^{17}$ m $^{-3}$
temperature	Т	${\sim}0.01~\text{eV}$
Debye length	λ_D	\sim 2 μ m
radius	r _p	\sim 400 μ m
half-length	Z _p	${\sim}11~{\sf cm}$
cyclotron pulsation	ω_c	$8.8 imes10^{11}~ m rad.s^{-1}$
plasma pulsation	ω_p	$\sim 2 imes 10^{10} \ m rad.s^{-1}$
bounce pulsation	ω_z	$1.6 imes 10^8~ m rad.s^{-1}$
rigid-rotation pulsation	ω_r	$\sim 2.3 imes 10^8 \; { m rad.s^{-1}}$

Description Simulation

Electron plasma configuration

24 / 29

Description Simulation

t_C distribution in function of beam radius in the beam line

Cooling efficiency = 100 % if the beam radius R<7 mm and a source frequency < 300 Hz

Conclusion

Description Simulation

Overall efficiency \sim 70%, it only depends on :

- the transverse energy of the beam (positron losses in the magnetic field gradient)
- the longitudinal energy spread of the beam (Saclay bunching method)

The positron flux is expected to be $2.8 \times 10^8 \text{ e}^+.\text{s}^{-1}$. With this flux, the accumulation time of $2 \times 10^{10} \text{ e}^+$ would be $\sim 100 \text{ s}$, i.e. the time between two ELENA \bar{p} pulses

・ロト ・部ト ・ヨト ・ ヨト

Description Simulation

Initial energies $(E_{\parallel},E_{\perp})$ in the electron plasma

Considering a positron not reflected, its total energy at the level of the first potential barrier, i.e. behind the magnetic mirror, is $E_{z,ini} - eV_{gate}$. Its longitudinal energy is spread from ~ 0 eV to $E_{z,ini} - eV_{gate}$ because of the magnetic gradient at the entrance of the trap. In the electron plasma, its longitudinal energy is then increased by $-e(V_p(r) - V_{gate})$

Description Simulation

$au_{\mathcal{C}}$ versus initial $(E_{\parallel},E_{\perp})$ and r

≣ ∽९ 28/29

Description Simulation

Efficacité d'entrée dans le piège

Conditions initiales : pulse dans la ligne de transport (B=10mT), diamètre du pulse 5 mm, énergie : $\langle E_{\perp} \rangle = 0.7$ eV, $E_{\parallel} = 50$ eV

29/29