Deuteron Separation in AMS-02

Fernando Barão Pedro Nunes

Outline

✓ Deuterons

✓ Standard Deuteron Separation

✓ Geomagnetic Earth Field

✓ Deuteron Separation Method

✓ Conclusions

Deuterons

- ✓ Rare hydrogen isotopes in cosmic rays that are believed to be of secondary origin.
- ✓ Deuterons results mainly from the nuclear interactions of primary cosmic rays protons and He nuclei with the interstellar medium.
- ✓ It is expected that they provide important information concerning the propagation of cosmic rays in the interstellar space.
- ✓ Constrain propagation models with the study of the D/P ratio ($\approx 2\%$)
- ✓ Achieving a flux of deuterons to higher energies is fundamental.
- ✓ The selection of deuterons is very complex due to the large background consisting by protons

Standard Deuteron Separation

Classic method

Based on the separation of two elements by calculating the mass:

$$M = rac{p}{\gamma eta} \left(rac{\sigma}{I}
ight)$$

$$M = \frac{p}{\gamma \beta} \left(\frac{\sigma_M}{M} \right)^2 = \left(\frac{\sigma_p}{p} \right)^2 + \left(\frac{\gamma^2 \sigma_\beta}{\beta} \right)^2$$

- Moment measured by **tracker**: $\frac{\sigma_p}{} \approx 10\%$
- Velocity measured by **RICH** $\frac{\sigma\beta}{\beta} \approx 0.1\%$
- Inadequate separation of deuterons from protons at energies above 1Gev

Example: 10 GeV proton

$$\gamma^2 \approx 101$$

$$\left(\frac{\sigma_M}{M}\right) = \sqrt{0.1^2 + \left(101 * 0.001\right)^2} \sim 0.14$$

Geomagnetic Earth Field

- ✓ The geomagnetic Earth field bends the charged particles that came from the galaxy.
- ✓ Dipole in first approximation, could be corrected at higher orders with multipoles expansion.
- ✓ Geomagnetic Rigidity Cutoff

Minimal rigidity $(R = \frac{pc}{ze})$ that a particle coming from the galaxy must have in order to reach a point near the Earth surface

$$R_c(h,\lambda,\alpha) = \frac{60}{\left(1 + \frac{h}{R_E}\right)^2} \frac{\cos \lambda^4}{\left[\sqrt{1 + \cos \alpha \cos \lambda^3} + 1\right]^2}$$

✓ We can use the geomagnetic Earth field as a natural selector of deuterons.

Rcut versus Latitude
Computed with particles entering AMS

Deuteron Separation Method

- ✓ Accept only particles that have a rigidity higher than the cutoff one. This allows us to select only primary particles.
- ✓ The cosmic ray particles have a cutoff velocity that depends on the mass of the particle for every orbit position.

$$\beta_c^{-2} = 1 + \left(\frac{A}{Z} \frac{m}{R_c(h, \lambda, \alpha)}\right)^2$$

- ✓ There is a velocity region where is possible to separate the deuterons from the protons.
- ✓ This region decreases with the increase in energy.

 Higher cutoff energies correspond to lower geomagnetic latitudes.

$$M_d > M_p \to \beta_c^p > \beta_c^d$$

Deuterons Deuterons and protons

$$\Delta \beta_c = \beta_c^p - \beta_c^d$$

Deuteron Separation Method

- ✓ Advantages of this method:
 - Direct use of the good velocity measurement to do the separation
 - High statistics collected by AMS-02
- ✓ Steps to the deuteron separation:
 - 1. Accept only particles with Z = 1.
 - 2. Quality cuts in the rigidity and beta measurements
 - 3. Accept particles that have a rigidity higher than the cutoff rigidity.
 - 4. Use the RICH resolution velocity to separate primary deuterons from primary protons.

Conclusions

✓ Obtain a deuteron mass distribution (We show in the next two plots two **preliminary** mass distributions)

- ✓ Expect to measure a deuteron flux and a D/P ratio up to 10-12 GeV
- ✓ Comparison of D/P ratio results with models predictions

Thank You!