

Active Scintillators for Neutron Detectors

F. A. F. Fraga, M. M. F. R. Fraga, L. M. S. Margato , A. Morozov, L. Pereira,

LIP Coimbra, Universidade de Coimbra

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Thermal Neutron Detectors

nuclear reactions to convert neutrons

- $n + 3He \rightarrow 3H + 1H + 0.764 \text{ MeV}$ Gaseous detectors (CF4, prop.)
- $n + 6Li \rightarrow 4He + 3H + 4.79 \text{ MeV}$ Scintillators
- $n + 10B \rightarrow 7Li^* + 4He \rightarrow 7Li + 4He + 0.48 \text{ MeV } \gamma + 2.3 \text{ MeV}$ (93%) $\rightarrow 7Li + 4He$ + 2.8 MeV (7%)
- $n + 155Gd \rightarrow Gd^* \rightarrow \gamma$ -ray spectrum \rightarrow conversion electron spectrum
- $n + 157Gd \rightarrow Gd^* \rightarrow \gamma$ -ray spectrum \rightarrow conversion electron spectrum
- $n + 235U \rightarrow fission \ fragments + ~160 \ MeV$
- $n + 239Pu \rightarrow fission \ fragments + ~160 \ MeV$

FP6 NMI3 JRA2 RII3-CT-2003-505925 ended 2008 MILAND – development of thermal neutron detectors •Would increase knowledge about neutron detectors, but should have a deliverable working detector prototype with a *firm and clear* specification

- •32 x 32 cm2 detector
- •1 mm resolution (FWHM) res/length = $3x10^{-4}$
- •1 MHz global count rate
- •100 kHz / mm2 local (peak) count rate
- •Gamma background rejection 10⁻⁸
- •50% efficient at 1.8Å
- •parallax free
- •Cost is critical
- Partners and Observers
- <u>P1 CCLRC</u> N. Rhodes (UK) T3, T6, T7
- P2 GKSS R. Kampmann (Germany) T1, T4, T5, T6, T7
- <u>P3 BNC</u> L. Rosta (Hungary) T1, T5, T6, T7
- P4 ILL B. Guerard (France) T1, T2, T3, T4, T5, T6, T7 coordinator
- <u>P5 LLB</u> C. Fermon (France) T2, T4, T6, T7
- <u>P6 FRM-II</u> K. Zeitelhack (Germany) T1, T2, T4, T6, T7
- <u>P7 LIP</u> F. Fraga (Portugal) T2, T3, T6, T7

Observers

EFO1 BNL G. Smith (USA)

- EFO2 SNSR. Cooper (USA)
- <u>EFO3 TU</u> H. Takahashi (Japan)
- <u>EFO4 RAL</u>J. Mir (UK)
- EFO5 BNL R. Krueger TU Delft (NL)

Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy

MILAND *European project* 32 x 32 cm² sensible area,

1 mm position resolution,

low parallax,

1 MHz count rate

Scintillators for Neutron Detectors

Table 1 Traditional and new thermal-neutron scintillators

Host	Dopant (conc mol%)	Density p (g/cm ³)	$\begin{array}{l} \rho Z_{eff}^4 \\ (\times10^{-6})^a \end{array}$	Abs. Length at 1.8Å (mm)	Light yield photons per		α/β Ratio	$\lambda_{em} \ (nm)$	$\tau \ (ns)$
					Neutron	MeV gamma			
⁶ Li-glass	Ce	2.5		0.52	~ 6000	~ 4000	0.3	395	75
⁶ LiI	Eu	4.1	31	0.54	50,000	12,000	0.87	470	1400
⁶ LiF/ZnS	Ag	2.6	1.2	0.8	160,000	75,000	0.44	450	>1000
LiBaF ₃	Ce,K	5.3	35		3500	5000	0.14	190-330	1/34/2100
LiBaF ₃	Ce,Rb	5.3	35		3600	4500	0.17	190-330	1/34/2400
⁶ Li ₆ ^{dep} Gd(¹¹ BO ₃) ₃	Ce	3.5	25	0.35	40,000	25,000	0.32	385,415	200/800
${}^{6}\text{Li}_{6}^{\text{dep}}\text{Gd}({}^{11}\text{BO}_{3})_{3}$ + Y ₂ SiO ₅	Ce Ce	} ^{3.9}		$\}^1$	40,000	30,000 30,000		420 420	200/800 70
Cs ₂ ⁶ LiYCl ₆	Ce (0.1)	3.3		3.2	70,000	22,000 700	0.66	380 255–470	~1000 3
$\mathrm{Cs}_2^6\mathrm{LiYBr}_6$	Ce (1)	4.1		3.7	88,000	23,000	0.76	389,423	89/2500

^aAs an indication of gamma-ray detection efficiency by photoelectric effect ρZ_{eff}^4 values are presented

CWE van Eijk, NIM A529(2004)260-267

Gaseous detectors

$n + 3He \rightarrow 3H + 1H + 0.764 \; MeV$

CF4 should be added to control the range -3 bar for 1mm FWHM

- CF4 is a good scintillator, but only a few primary photons
- Secondary scintillation ~.3 photon per secondary electron

Vanode=1650 V; VPMT=800 V

ABOUT DOCUMENTATION LINKS NEWS & PRESS USE NEUTRONS ENSA NMI3 ESS

W22 - Detectors - Participants

JRA Detectors

Detectors Home
Participants
Tasks
Meetings
Publications
Links
Other NMI3 Research
Activities
NMI3 FP7

Partners						
ILL - Institut Laue-Langevin						
LIP - Laboratório de Instrumentação e Física Experimental de Particulas. Portugal						
STFC - Science and Technology Facilities Council						
FZJ- Forschungszentrum Jülich						
CNR - National Research Council, Italy						
TUM - Technischen Universität München						
Observers						
ToU - University of Tokyo						

* LIP gas scintillation, simulation of the detector

Thermal Neutron Detectors

nuclear reactions to convert neutrons

- $n + 3He \rightarrow 3H + 1H + 0.764 \text{ MeV}$ Gaseous detectors (CF4, prop.)
- $n + 6Li \rightarrow 4He + 3H + 4.79 \text{ MeV}$ Scintillators
- n + 10B \rightarrow 7Li^{*} + 4He \rightarrow 7Li + 4He + 0.48 MeV γ +2.3 MeV (93%) \rightarrow 7Li + 4He + 2.8 MeV (7%)
- $n + 155Gd \rightarrow Gd^* \rightarrow \gamma$ -ray spectrum \rightarrow conversion electron spectrum
- n + 157Gd \rightarrow Gd* $\rightarrow \gamma$ -ray spectrum \rightarrow conversion electron spectrum
- $n + 235U \rightarrow fission \ fragments + ~160 \ MeV$
- $n + 239Pu \rightarrow fission \ fragments + ~160 \ MeV$

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

Concursos de Projectos de I&D Calls for R&D Projects

Título do projeto (em português)

Project title (in portuguese) RCPs revestidas com boro para detectores de neutrões

Título do projeto (em inglês) Project title (in english) Boron coated RPCs for thermal neutron detectos