Phenomenologic Studies @ the LHC

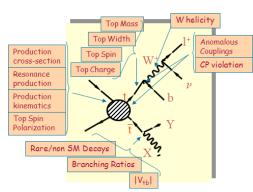
António Onofre

LIP/UM, onofre@fisica.uminho.pt

Jornadas LIP 2012, April 21st-23th Pavilhão do Conhecimento, Lisboa

The Team

- Antonio Onofre
- Augusto Barroso
- Francisco del Águila Giménez
- Henrique Carvalho
- João Carvalho (on leave)
- José Santaigo Perez
- Juan Antonio Aguilar-Saavedra
- Marco Sampaio
- Miguel Fiolhais (PhD student)
- Miguel Won (PhD student)
- Mikael Chala (PhD student)
- Nuno Castro
- Pedro Ferreira
- Pittau Roberto
- Renato Júnior
- Rita Monteiro
- Rui Santos



Rich Top quark Phenomenology @ LHC

- $t\bar{t}$ production
 - \bullet $\sigma_{t\bar{t}}$
 - Mass
 - Charge
 - W polarization and the t → bW decay
 - Anomalous couplings
 - tt Spin correlations
 - FCNC
 - $t\bar{t}$ resonances
- Single top production
 - cross section
 - FCNC

1- The Wtb vertex structure and TopFit

The Wtb vertex structure

Why is it necessary a precise model-independent measurement of the Wtb vertex structure?

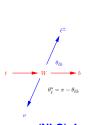
- It may reveal physics beyond the Standard Model
 - V_{tb} could be different from the Standard Model value
 - Anomalous couplings may appear at the vertex
- It may help understand possible other new physics beyond the Standard Model
 - top quarks decay almost exclusively to $t \to W^+ b$
 - understanding the structure of the Wtb vertex helps revealling possible non-standard $t\bar{t}$ production at LHC, $Zt\bar{t}/\gamma t\bar{t}$ couplings at ILC, etc.
 - important for B and K physics (indirect limits on anomalous couplings, see later)

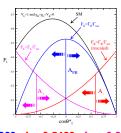
The Wtb vertex structure

The Wtb vertex must be determined by a global fit to several observables:

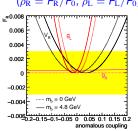
- Several, theoretically equivalent, observables studied for $t\bar{t}$ production at LHC (not all explored yet @ LHC)
- Single top cross section usefull (sensitive to V_{tb} and anomalous couplings)
- Indirect limits from $b \rightarrow s\gamma$ available (not used)
- All couplings are allowed to vary freely in TopFit to find the allowed regions for a given CL

tt Production: Anomalous couplings at the Wtb vertex

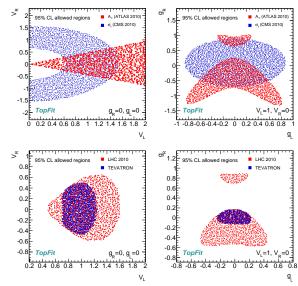

General Wtb vertex


Eur.Phys.J. C50 (2007) 519-533

$$\mathcal{L} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_{L}P_{L} + V_{R}P_{R})t W_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}(g_{L}P_{L} + g_{R}P_{R})t W_{\mu}^{-}$$


 New angular asymmetries and helicity ratios were introduced to probe anomalous couplings:

$$A_t = \frac{N(\cos\theta_\ell^* > t) - N(\cos\theta_\ell^* < t)}{N(\cos\theta_\ell^* > t) + N(\cos\theta_\ell^* < t)}$$


 $V_{\mathrm{R}}, g_{\mathrm{L}}$ and g_{R} change $F_{\mathrm{R}}, F_{\mathrm{L}}$ and F_{0} $(\rho_{\mathrm{R}} = F_{\mathrm{R}}/F_{\mathrm{0}}, \, \rho_{\mathrm{L}} = F_{\mathrm{L}}/F_{\mathrm{0}})$

(NLO) $A_{\rm FB}$ =-0.2269, A_+ =0.5429, A_- =-0.8402, $ho_{\rm L}$ =-0.8402 and $ho_{\rm R}$ =-0.8402

Constraints on the Wtb vertex from early LHC data

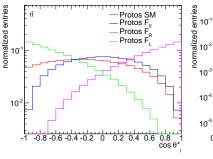
Phys.Rev.D84 019901,2011

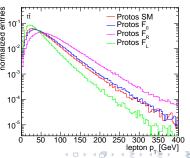
2- Monte Carlo Generator: PROTOS (+TRIADA)

The PROTOS generator

PROTOS: PROgram for TOp Simulations

developed and mantained by J.A. Aguilar-Saavedra (jaas@ugr.es)


Available processes in Protos in version 2.2


- (Anomalous) Wtb couplings (V_R, g_L, g_R)
 - t̄t
 - single top $(tj, t\bar{b}j, t\bar{b}, tW, t\bar{b}W)$
- Top pair production with FCN decays and single FCN top production
 - $t\bar{t}$ (\rightarrow *XqWb*, $X = Z, \gamma, g, H$)
 - single top (Zt, γt , Ht, direct(2 \rightarrow 1))
- Top processes with four-fermion effective operators (ex. uu → tt, same sign production)
- Heavy vector-like quark production
- Triada 1.1: a generator for seesaw messengers (heavy neutrinos, Z', W', etc.)

$t\bar{t}$ templates generation with PROTOS

 PROTOS can be used to build different W polarization templates (changing the values os the anomalous couplings):

	$V_{ m L}$	$V_{ m R}$	$oldsymbol{g}_{ ext{L}}$	$oldsymbol{g}_{ ext{R}}$				
	1.53205	0	-0.01989	0.714647				
$F_{\rm L}=1$	0.504619	0.001919	0	1.08275				
$F_{\rm R}=1$	0.001919	0.504619	1.08275	0				
(for $m_t = 172.5$ GeV, $m_W = 80.4$ GeV and $m_b = 4.8$ GeV)								



3- Monte Carlo Generator: METop (NLO generator)

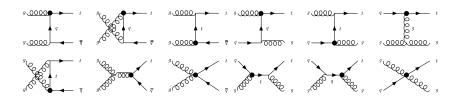
Single top production through FCNC

Several top quark FCNC Vertices Studied:

Ennhanced Branching Ratios for several models:

$BR(t \rightarrow FCNC)$ in several models:

	SM	QS		FC 2HDM		,		
$t \rightarrow q \gamma$	$\sim 10^{-14}$	$\sim 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-9}$	$\sim 10^{-6}$	~ 10 ⁻⁶		
$t \rightarrow qZ$	$\sim 10^{-14}$	$\sim 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$\sim 10^{-6}$	$\sim 10^{-5}$		
$t \rightarrow qg$	$\sim 10^{-12}$	$\sim 10^{-7}$	$\sim 10^{-4}$	$\sim 10^{-5}$	$\sim 10^{-5}$	$\sim 10^{-4}$		


[Acta Phys. Polon. B 35 (2004) 2695]

 Effects of FCNC may manifest at top quark production and decay and indicates the existence of New Physics beyond the Standard Model

Single top production through FCNC

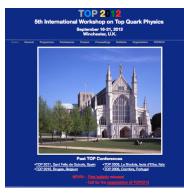
What was the contribution from the project?

- A new NLO generator is now available (METop) to the community and it has been used by the LHC Collaborations
- It includes @ NLO single top + jet production (g g → q̄ t + X, g q → g t + X)
 (many contributions from Strong and EW sectors)

(see Miguel Won's talk on METop)

Next Steps and conclusions

 Immediate next steps: "ScannerS" a tool to constrain the Higgs sector parameter phase space (see Marco Sampaio's talk)


(almost) Final thoughts:

- The project has been able to establish a good collaboration between Experimentalists and Theorists
- Several tools have been developed and are available to the LHC community (several others are in the pipeline)
- Master and PhD students have been trained
- at last but not the least....

Next Top Quark Workshop

http://pprc.qmul.ac.uk/top2012 September 16 - 21, 2012 (Winchester, England) Next Call for 2013:

