

Light Studies and exotics events at Pierre Auger Observatory

Jornadas do LIP 2012

Fundação para a Ciência e a Tecnologia
MINISTÉRIO DA CIÊNCIA, TICNOLOGIA E ENSINO SUPERIOR

Auger LIP Group

João Pedro Espadanal

How to detect the light emission of a shower?

> Through the emitted light

- 1. Cherenkov Light
- 2.Fluorescence Light in Nitrogen

- But we also have light scattering in the atmosphere that distort the shower image
 - 1. Rayleight Scattering
 - 2. Mie Scattering

Auger, Jornadas LIP João Espadanal April 2012 2/15

Fluorescence Detectors

Auger, Jornadas LIP João Espadanal April 2012 3/15

Light Detected

□ Fluorescence rich event

□ Cherenkov rich event

Auger, Jornadas LIP João Espadanal April 2012 4/15

Shower in 3 Dimensions

□ Shower in 3D space

- **Shower intrinsic width**
- Detector effects

Atmospheric effects

 $\frac{\text{Shower}}{\text{Image width}} = \frac{\text{Shower intrinsic}}{\text{width}} \otimes \text{Atmosphere} \otimes \text{Detector}$

SDId 3599086

Energy = 1.58×10^{19} Distance to eye = 3.87 km

Shower in 3 Dimensions

□ Shower in 3D space

- Shower intrinsic width
- Detector effects
- **■** Atmospheric effects

Auger, Jornadas LIP João Espadanal April 2012 6/15

3D Shower Simulation

■ We generate the air showers □ Shower in 3D space ■ **Shower intrinsic width** Detector effects **■** Atmospheric effects We are working in a shower simulation Within the intrinsic shower in sir in 3 J.Oehlschlaeger, R.Engel, FZKarlsruhe

Auger, Jornadas LIP João Espadanal April 2012 7/15

3D Simulation: Offline Framework Intervention

Auger, Jornadas LIP João Espadanal April 2012 8/15

Auger, Jornadas LIP João Espadanal April 2012 9/15

□ CLF Data -> Far away from telescopes (atmosphere effects)

VAOD Proportional to the amount of aerosols

Which cause more multi scattering by Mie

Auger, Jornadas LIP João Espadanal April 2012 11/15

Roving Laser Campaign - Photos

Auger, Jornadas LIP João Espadanal April 2012 12/15

Outlook

- ☐ Detailed understanding of the detector behavior and atmospheric effects
- ☐ Shower physics studies with new spatial dimensions
- ☐ After understanding the atmosphere and detector, we can disentangle strange and exotics events

Exotics Events

Auger, Jornadas LIP João Espadanal April 2012 14/15

Exotics Events

Low flux

Limited detector capabilities

But a unique energy window!

- New physicsat primary or in shower development
- Neutrino channel: low background
- Looking for distinctive signatures

Candidate	Properties	Xmax	RMS	SD
Particle				
Magnetic	Mass of ~105 GeV, created	Deep X_{max}	High RMS	Very small SD
Monopole	in SU(4)xSU(2)xSU(2)			signal from muon-
	symmetry breaking, primary			poor showers
	particle			
MBH	Neutrino-induced secondary,	Proton-like	Low RMS	Hadronic SD signal
	near instantaneous decay to	$X_{ m max}$ moving		
	an "explosion" of Hawking	to deep		
	Radiation	1		
UHECRONs	Strongly interacting, heavy,	Deep X_{max}	High RMS	Hadronic SD signal
	conceived as a possibility for			
	super-GZK events			
Strangelet	Bag of up, down and strange	Iron-like $X_{ m max}$	Moderate	High muon
	quarks in roughly equal		RMS	content, and large
	proportions, high mass			SD signal
	(~500 GeV)			
Q-Ball	Bose-Einstein condensate of	Very	Proton-	Low muon content
	a SUSY strangelet, proton-	Deep X_{max}	like RMS	and small SD signal
	decay inducing			

Auger@ Lisbon Group

□ But we found Elves!!!

Thank You

Auger, Jornadas LIP João Espadanal April 2012 16/15

Back up slides

New approach: 3D Simulation

In Corsika:

☐ The energy deposited and other relevant variables are saved for each sky bin

<u>Physical Geometry</u>

- ☐ Shower has azimuthal symmetry
- ☐ Bins with smaller volume in denser shower region (small r)

Cylindrical geometry (r, ϕ, z) :

- \Box r: 50 x 20m
- $\Box \phi : 24 \times 15 \text{ deg} \quad 24 \times 50 \times 300 = 6 \times 10^5 \text{ bins}$
- □ z: 500 x 100 m
- (max size: 1000m x 360 deg x 50000 m)

J.Oehlschlaeger,R.Engel,FZKarlsruhe

Auger, Jornadas LIP João Espadanal April 2012 18/15

New approach: 3D Simulation

Auger, Jornadas LIP João Espadanal April 2012 19/15

Sky Bins Information

☐ For fluorescence:

$$N_{emitted}^{\gamma^{fluo}}(i,\Delta\lambda) \quad = \quad \frac{E_{dep}(i)}{E_0} Y_e^{fluo}(i,\Delta\lambda)$$

■ Isotropic Emission

Sky Bins Information

□ For Cherenkov:

■ Electron Length distribution

■ Electrons angle distribution

$$N_{ph} = n_{Electons}. < l_{\alpha} > .\frac{l_{\phi}}{< l_{\phi} >} \quad 2\pi \left(1 - \frac{1}{n^2}\right) \quad \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}\right)$$

$$2\pi(1-\frac{1}{n^2}) \quad (\frac{1}{\lambda_2}-\frac{1}{\lambda_1})$$

Sky Bins Information

□ For Cherenkov:

■ Electrons angle distribution

$$N_{ph} = n_{Electons}. < l_{\alpha} > .\frac{l_{\phi}}{< l_{\phi} >} \quad 2\pi \left(1 - \frac{1}{n^2}\right) \quad \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}\right)$$

3D Simulation: Offline Framework Intervention

□ Offline Framework Intervention

- Offline Framework simulates and reconstructs the events after Monte Carlo generation:
 - Simulate the event
 - Simulate the detector
 - Add backgrounds and simulate efficiencies
 - Reconstruct the event
- Change and create a few modules, in order to be able to simulate in the framework
 - Produce photons: Fluorescence emission Cherenkov emission
 - Propagate to detector using geometrical information :
 - solid angle
 - emission angle
 - distance to telescope
 - Attenuate and scatter photons
 - Cherenkov scattered
 - Multiple-scattering

Validation of 3D Simulation

□ Geometry reconstruction

Validation of 3D Simulation

■ Xmax reconstruction

□ Energy reconstruction

Reconstruction

$$t_i = t_0 + \frac{R_p}{c} \tan[(\chi_0 - \chi_i)/2]$$

$$y = Cx \qquad C = \begin{cases} 0, & \text{if } i < j \\ c_i^d + c_{ii}^s, & \text{if } i = j \\ c_{ij}^s, & \text{if } i > j \end{cases}$$

LM6-800414142 in ADSTs (EventBrowser)

Auger, Jornadas LIP João Espadanal April 2012 29/15

Challenging Effects

□Challenging Effects

- Shower width
- Detector effects
- **■** Atmospheric effects

☐ Rayleigh Scattering of Fluorescence Light

☐ Mie and Rayleigh Cherenkov Scattering

■ Multi-Scattering

☐ Smearing of the light

☐ <u>Less light at the telescopes</u>

Auger, Jornadas LIP João Espadanal April 2012 30/15

VAOD Proportional to the amount of aerosols

Which cause more multi scattering by Mie

Auger, Jornadas LIP João Espadanal April 2012 31/15

Geant4

Physics

Rayleigh scattering:

Phase function (G4OpRayleigh class in Geant4 kernel)

$$\frac{d\sigma}{d\Omega} = \sigma \frac{3}{16\pi} \left(1 + \cos^2 \theta\right)$$
 Implemented (dependence on depolarization factor tbd)

Mie scattering:

Phase function (G4OpMie class in Geant4 kernel)

$$\frac{d\sigma}{d\Omega} = \frac{1 - g^2}{4\pi} \left(\frac{1}{(1 + g^2 - 2g\cos\theta)^{3/2}} \right)$$
 Implemented (g is the average value of cosθ and depends the an agreed two

and depends the on aerosol type)

$$\frac{d\sigma}{d\Omega} = \frac{1-g^2}{4\pi} \left(\frac{1}{\left(1+g^2-2g\cos\theta\right)^{3/2}} + f\frac{3\cos^2\theta - 1}{2(1+g^2)^{3/2}} \right) \quad \text{backscattering component} \quad \text{To be implemented}$$

Ruben Conceição

AUGER

Cosmic Rays spectrum and propagation

□ Energy Spectrum

■ Strong evidences for the GZK effect

- Assuming magnetic field 1µG
- Proton with ~10¹⁹eV corresponds to a Larmor radius of ~10kpc

^{*}The Pierre Auger Collaboration, Phys. Lett. B685:239-246,2010

^{*} Cronin, J. W. 2005, Nuclear Physics B (Proc. Suppl.), 138, 2005

Cosmic Rays directions

□ Anisotropy

■ Analysing the 57 more energetic events (>10¹⁹ eV), we have anisotropy, but more statistic is needed for better conclusions

^{*}The Pierre Auger Collaboration, arXiv:1009.1855v2 [astro-ph.HE]

Xmax results

□ Xmax remind

□ RMS Xmax

3. Xmax results

■ Xmax evolution with energy

- Xmax goes from iron to proton, and then seems to returns to heavier nuclei again (at ultra high energies)
- Are cosmic rays really becoming heavier?
 - Astrophysical Challenges
 - Or problems with model predictions
 - Are there **new interactions**?

□ Recent results

*The Pierre Auger Collaboration, Phys. Rev. Lett. 104, 2010.

Muon Number

□ Larger Muon number

- More muons than possible
- Standard physics can not reproduce it
- May be new kinds of interactions
 - Non-perturbative QCD is not understood
 - Problems in the hadronization

■ Energy reconstruction?

Hadronic Models

□ Cross section

The models can not des consistently

■ Multiplicity

- Non-perturbative QCD regime so we can not make analytic calculations
- Models are inconsistent between each other and with the data
- Cosmic rays composition still an open question

- Challenges for new Data
- Challenge for news models

10 ⁶

th energy

GeV