

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower

Xmax distribution

Muonic Longitudinal profiles

Measuring the muonic profile -Muon Production Depth (MPD)

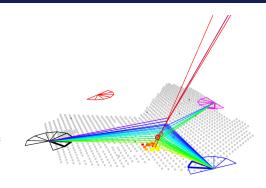
method

Electromagnetic and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP

 23^{rd} April 2012

Electromagneti and muonic cosmic ray shower profiles


Francisco Diogo on behalf of the Auger Group at LIP

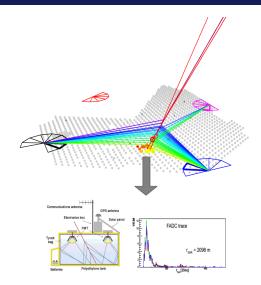
Electromagnetic Shower

distribution interpretation

Muonic Longitudina profiles

Measuring the muonic profile -Muon Production Depth

Electromagneti and muonic cosmic ray shower profiles


Francisco Diogo on behalf of the Auger Group at LIP

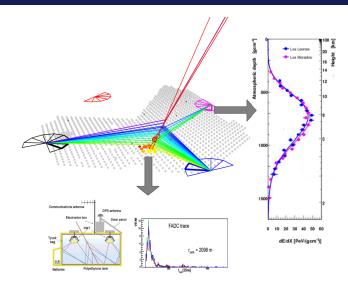
Electromagnetic Shower

Xmax distribution interpretation

Muonic Longitudina profiles

Measuring the muonic profile -Muon Production Depth (MPD)

Electromagneti and muonic cosmic ray shower profiles


Francisco Diogo on behalf of the Auger Group at LIP

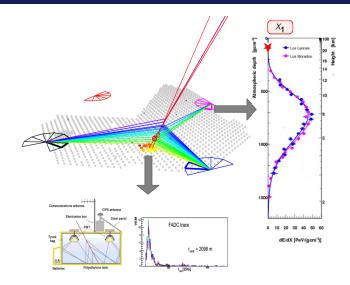
Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudina profiles

Measuring the muonic profile -Muon Production Depth

Electromagneti and muonic cosmic ray shower profiles


Francisco Diogo on behalf of the Auger Group at LIP

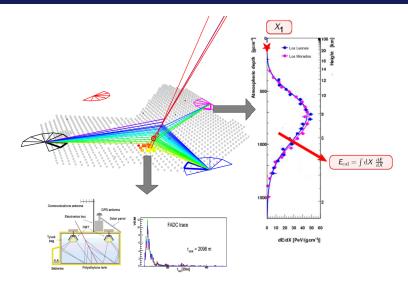
Electromagnetic Shower

distribution interpretation

Muonic Longitudina profiles

Measuring the muonic profile -Muon Production Depth

Electromagneti and muonic cosmic ray shower profiles


Francisco Diogo on behalf of the Auger Group at LIP

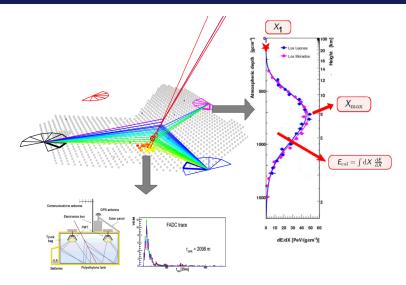
Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudina profiles

Measuring the muonic profile -Muon Production Depth

Electromagneti and muonic cosmic ray shower profiles


Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

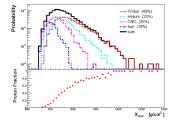
distribution interpretation

Muonic Longitudina profiles

Measuring the muonic profile -Muon Production Depth

Electromagnetic Longitudinal Profile - X_{max}

Electromagneti and muonic cosmic ray shower profiles


Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagneti Shower Profile

distribution interpretation

Muonic Longitudinal profiles

Measuring
the muonic
profile Muon
Production
Depth
(MPD)

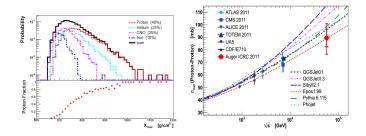
The electromagnetic longitudinal profile is a very powerful analysis tool, and its main variable is X_{max} :

• sensitive to the mass of the primary particle

Electromagnetic Longitudinal Profile - X_{max}

Electromagnet and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP


Electromagnet Shower Profile

distribution interpretation

Muonic Longitudinal profiles

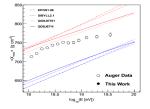
Measuring the muonic profile -Muon Production Depth (MPD)

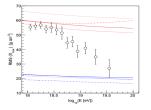
method

The electromagnetic longitudinal profile is a very powerful analysis tool, and its main variable is X_{max} :

- sensitive to the mass of the primary particle
- the $X_{max}=X_1+\Delta$ distribution tail is dominated by showers with large X_1 proton-Air inelastic cross-section measurement
- Particle physics at energies greater than LHC

Electromagneti and muonic cosmic ray shower profiles


Francisco Diogo on behalf of the Auger Group at LIP


Electromagnetic Shower

 X_{max} distribution interpretation

Muonic Longitudina

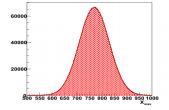
Measuring
the muonic
profile Muon
Production
Depth

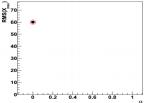
X_{max} and $\overline{RMS}(X_{max})$ joint interpretation

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP

Electromagnetic Shower


Xmax distribution interpretation

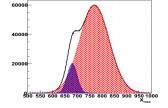

Muonic Longitudinal

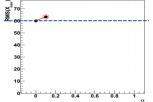
Measuring the muonic profile -Muon Production Depth (MPD)

menhord

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP


Electromagnetic Shower Profile


 X_{max} distribution
interpretation

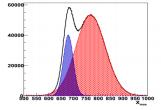
Muonic Longitudinal profiles

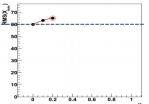
Measuring the muonic profile -Muon Production Depth (MPD)

menhord

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP


Electromagnetic Shower

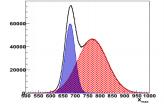

Xmax distribution interpretation

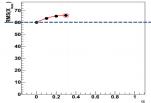
Muonic Longitudinal profiles

Measuring the muonic profile -Muon Production Depth (MPD)

method

Electromagneti and muonic cosmic ray shower profiles


Francisco Diogo on behalf of the Auger Group at LIP


Electromagnetic Shower

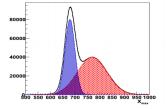
 X_{max} distribution
interpretation

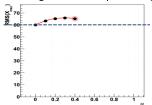
Muonic Longitudinal profiles

Measuring
the muonic
profile Muon
Production
Depth
(MPD)

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP


Electromagnetic Shower


Xmax distribution interpretation

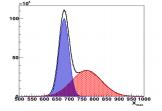
Muonic Longitudinal profiles

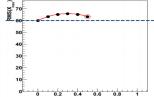
Measuring
the muonic
profile Muon
Production
Depth
(MPD)

method

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP

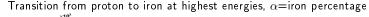

Electromagnetic Shower

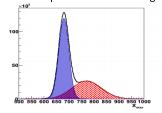

Xmax distribution interpretation

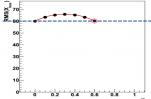
Muonic Longitudinal profiles

Measuring the muonic profile -Muon Production Depth (MPD)

Electromagneti and muonic cosmic ray shower profiles


Francisco Diogo on behalf of the Auger Group at LIP


Electromagnetic Shower

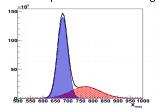

Xmax distribution interpretation

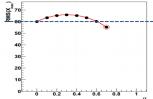
Muonic Longitudinal

Measuring the muonic profile -Muon Production Depth (MPD)

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP


Electromagnetic Shower

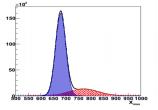

Xmax distribution interpretation

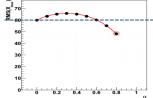
Muonic Longitudinal

Measuring the muonic profile -Muon Production Depth (MPD)

method

Electromagneti and muonic cosmic ray shower profiles


Francisco Diogo on behalf of the Auger Group at LIP


Electromagnetic Shower

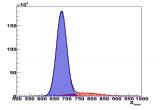
Xmax distribution interpretation

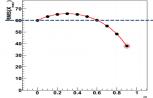
Muonic Longitudinal profiles

Measuring
the muonic
profile Muon
Production
Depth
(MPD)
method

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP


Electromagnetic Shower Profile


Xmax distribution interpretation

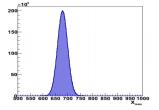
Muonic Longitudinal

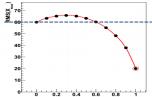
Measuring the muonic profile -Muon Production Depth (MPD)

method

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP


Electromagnetic Shower


Xmax distribution interpretation

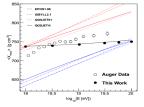
Muonic Longitudinal profiles

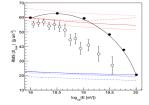
Measuring the muonic profile -Muon Production Depth (MPD)

method

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP


Electromagnetic Shower


Xmax distribution interpretation

Muonic Longitudinal

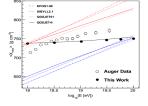
Measuring the muonic profile -Muon Production Depth (MPD)

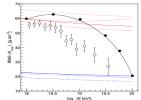
method

Electromagneti and muonic cosmic ray shower profiles

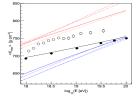
Francisco Diogo on behalf of the Auger Group at LIP

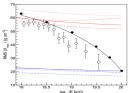
Electromagnetic Shower


 X_{max} distribution
interpretation


Muonic Longitudinal profiles

Measuring
the muonic
profile Muon
Production
Depth
(MPD)


method

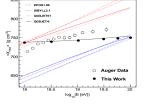

Transition from proton to iron at highest energies, $\alpha =$ iron percentage

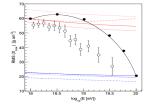
Transition from 50% proton/50% iron

Electromagnet and muonic cosmic ray shower profiles

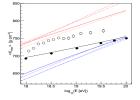
Francisco
Diogo
on behalf of
the Auger
Group at LIP

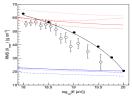
Electromagnetic Shower


 X_{max} distribution
interpretation

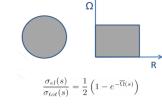

Muonic Longitudinal profiles

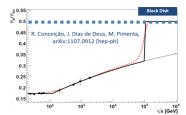
the muonic profile -Muon Production Depth


method


Transition from proton to iron at highest energies, $\alpha =$ iron percentage

Transition from 50% proton/50% iron


No simple scenario of transition from proton to iron explains data!



Grey Disk Model

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP

Electromagnetic Shower Profile

Xmax distribution interpretation

Muonic Longitudina

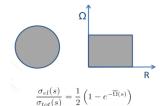
Measuring
the muonic
profile Muon
Production
Depth
(MPD)

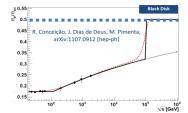
Grey Disk Model

Electromagneti and muonic cosmic ray shower profiles

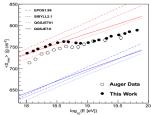
Francisco Diogo on behalf of the Auger Group at LIP

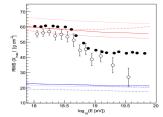
Electromagnetic


Shower Shower


 X_{max} distribution interpretation

Muonic Longitudina


Measuring
the muonic
profile Muon
Production
Depth
(MPD)

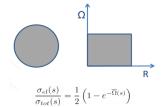

method

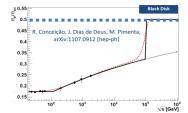
Proton turning into a black disk at $10^{19}~{\rm eV}$

Grey Disk Model

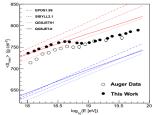
Electromagneti and muonic cosmic ray shower profiles

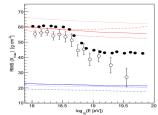
Francisco Diogo on behalf of the Auger Group at LIP


Electromagnetic


Shower Profile

 X_{max} distribution
interpretation


Muonic Longitudinal profiles


the muonic profile -Muon Production Depth

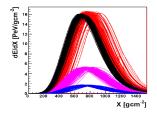
Proton turning into a black disk at 10^{19} eV

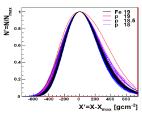
To interpret data we need a better understanding of the first interaction

Universal Shower Profile

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP


Electromagnetic Shower


 X_{max} distribution interpretation

Muonic Longitudinal profiles

Measuring
the muonic
profile Muon
Production
Depth
(MPD)

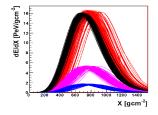
method

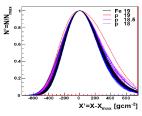
Deconvoluting information from N_{max} and X_{max} the shape of the electromagnetic profile is (almost) universal

Universal Shower Profile

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP


Electromagnetic Shower


 X_{max} distribution interpretation

Muonic Longitudinal profiles

Measuring
the muonic
profile Muon
Production
Depth
(MPD)

method

Deconvoluting information from N_{max} and X_{max} the shape of the electromagnetic profile is (almost) universal

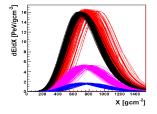
In LIP, a new parameterization was introduced, in which the profile assymetry is described by a parameter R^\prime

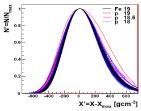
- ullet is a measure of the shower development speed $\Delta = X_{max} X_1$
- is independent of X_1
- is sensitive to composition of the primary particle

Universal Shower Profile

Electromagnet and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP


Electromagnetic Shower


 X_{max} distribution interpretation

Muonic Longitudinal profiles

Measuring the muonic profile -Muon Production Depth (MPD)

method

Deconvoluting information from N_{max} and X_{max} the shape of the electromagnetic profile is (almost) universal

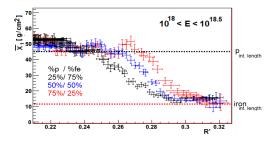
In LIP, a new parameterization was introduced, in which the profile assymetry is described by a parameter R'

- ullet is a measure of the shower development speed $\Delta = X_{max} X_1$
- is independent of X_1
- is sensitive to composition of the primary particle

Possible to measure $X_1 = X_{max} - \Delta(R')$

$X_1(R')$

Electromagnet and muonic cosmic ray shower profiles


Francisco Diogo on behalf of the Auger Group at LIP

Electromagnetic Shower Profile

 X_{max} distribution
interpretation

Muonic Longitudinal profiles

Measuring
the muonic
profile Muon
Production
Depth
(MPD)
method

Francisco Diogo Master Thesis

- $\overline{X_1}$ for mixed iron/proton samples
- Extreme bins in R' allow for a measure of both cross-sections
- Only done in simulations, still need to analyze data

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

Measuring the muonic profile -Muon Production Depth

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP

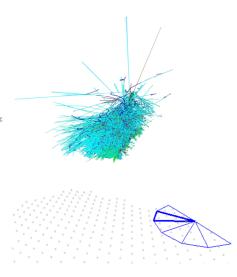
Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

Measuring the muonic profile -Muon Production Depth (MPD)

Electromagneti and muonic cosmic ray shower profiles


Francisco Diogo on behalf of the Auger Group at LIP

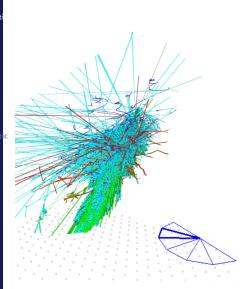
Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

Measuring the muonic profile -Muon Production Depth

Electromagneti and muonic cosmic ray shower profiles


Francisco
Diogo
on behalf of
the Auger
Group at LIP

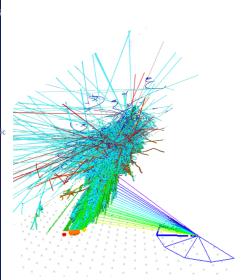
Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

Measuring
the muonic
profile Muon
Production
Depth

Electromagneti and muonic cosmic ray shower profiles


Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

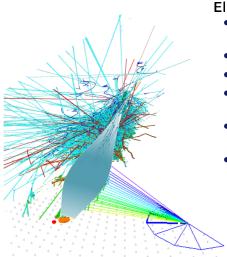
Muonic Longitudinal profiles

Measuring
the muonic
profile Muon
Production
Depth
(MPD)

EAS components

Electromagnet and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP


Electromagnetic Shower

Xmax distribution interpretation

Muonic Longitudinal profiles

Measuring the muonic profile -Muon Production Depth (MPD)

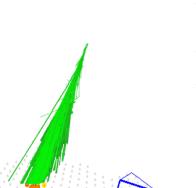
method

Electromagnetic

- carries most energy (90%) of developed showers
- visible in both SD and FD
- easy to measure near maximum
- only visible in dark nights with clear sky
- very difficult to measure near the inital region
- first interaction information is 'dilluted'

EAS components

Electromagnet and muonic cosmic ray shower profiles


Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower

distribution interpretation

Muonic Longitudinal profiles

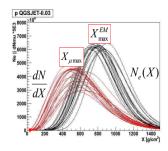
Measuring the muonic profile -Muon Production Depth (MPD)

Muonic

- hard to measure no signal in FD, difficult to disentagle from e.m signal in SD
- muons interact scarcely with the atmosphere
- high energy muons preserve information from first interaction

The muonic longitudinal shower profiles at production

Electromagneti and muonic cosmic ray shower profiles


Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower

distribution interpretation

Muonic Longitudinal profiles

Measuring
the muonic
profile Muon
Production
Depth
(MPD)

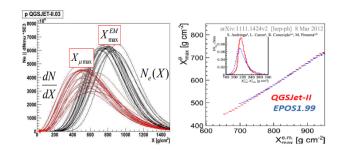
The number of muons produced in the shower as a function of depth can be described by the same function as the e.m. profile

The fast rise allows a more direct probing of the initial interactions

The muonic longitudinal shower profiles at production

Electromagnet and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP


Electromagnetic Shower Profile

 X_{max} distribution
interpretatio

Muonic Longitudinal profiles

the muonic profile -Muon Production Depth

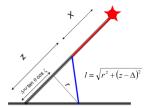
menhord

The number of muons produced in the shower as a function of depth can be described by the same function as the e.m. profile The fast rise allows a more direct probing of the initial interactions The profiles are heavily correlated: both X_{max} and the shape parameters of one profile can be estimated by knowing the other

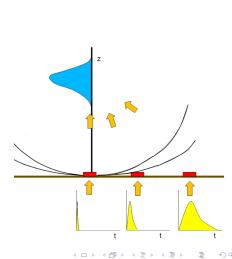
• Inconsistencies give important information on hadronic models

Muon Production Depth (MPD)

Electromagneti and muonic cosmic ray shower profiles


Francisco
Diogo
on behalf of
the Auger
Group at LIP

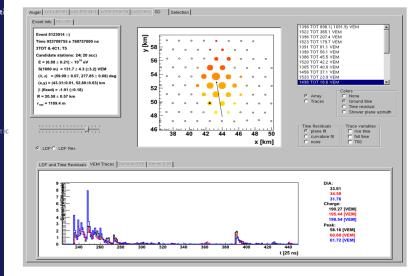
Electromagnetic Shower


Xmax distribution interpretation

Muonic Longitudinal

Measuring the muonic profile -Muon Production Depth (MPD)

Muons travel in straight lines. Knowing their arrival time, we can get the depth of their production, z.

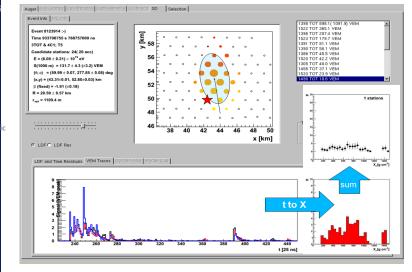

Electromagneti and muonic cosmic ray shower profiles

Francisco Diogo on behalf of the Auger Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

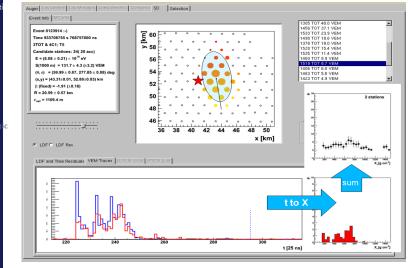

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

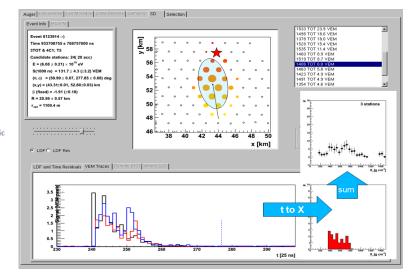

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

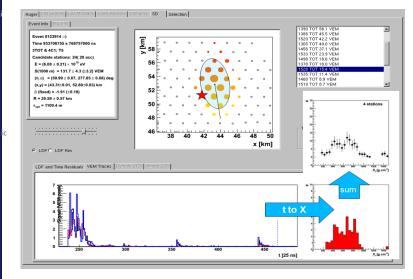

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

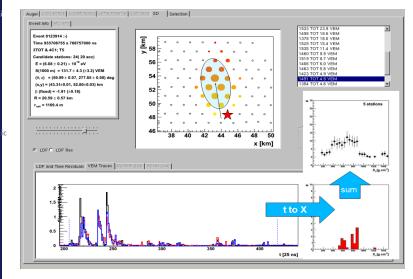

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

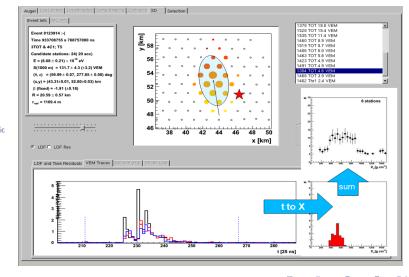

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

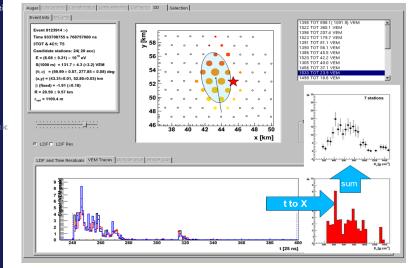

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

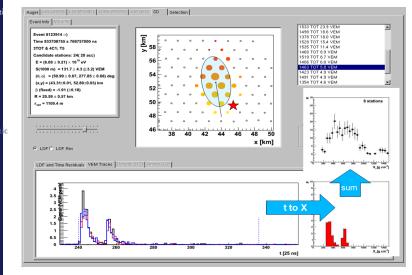

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles


Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

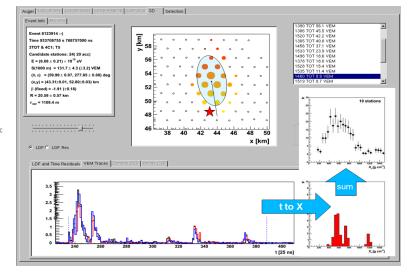

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

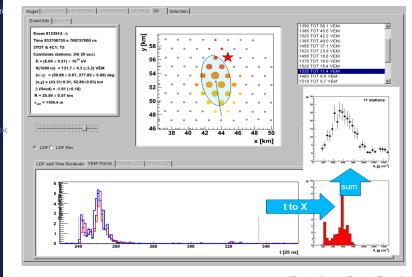

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

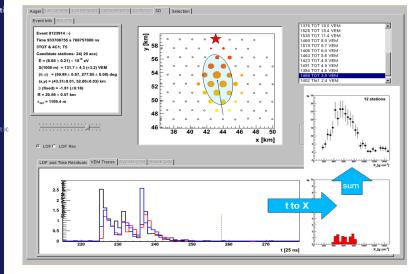

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

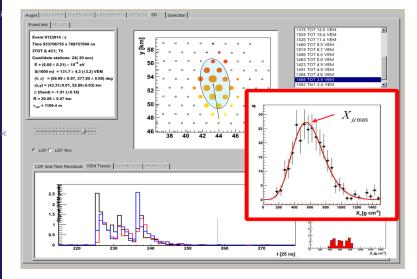

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

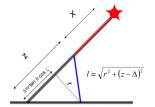

Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

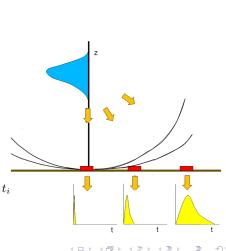
Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles


Electromagneti and muonic cosmic ray shower profiles

Diogo on behalf of the Auger Group at LIP


Electromagnetic

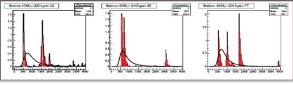
Longitudinal

Measuring the muonic profile -Muon Production Depth (MPD)

Muons travel in straight lines. Modelling their p_t distribution, and correcting for decays and atmospheric effects we can calculate the likelihood that a muon reaches a tank at time t_i

MPD 2 global fit

Electromagneti and muonic cosmic ray shower profiles


Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal

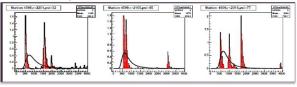
Measuring the muonic profile -Muon Production Depth (MPD) Fits directly over the stations FADC traces

Eva dos Santos PhD thesis

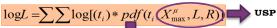
$$\log L = \sum \log[(t_i) * pdf(t_i X_{\max}^{\mu}, L, R)]$$
 USP
[Detector \otimes (Geometry \otimes Kinematics)] & Muon decay

MPD 2 global fit

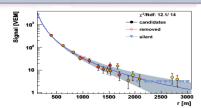
Electromagneti and muonic cosmic ray shower profiles


Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile


distribution interpretation

Muonic Longitudinal profiles


Measuring the muonic profile -Muon Production Depth (MPD) Fits directly over the stations FADC traces

Eva dos Santos PhD thesis

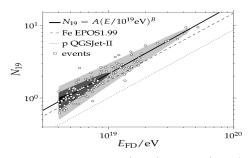
 $[ext{Detector} \otimes (ext{Geometry} \otimes ext{Kinematics})] & Muon decay$

Micael Oliveira Master Thesis

Muon excess

Electromagnet and muonic cosmic ray shower profiles

Diogo on behalf of the Auger Group at LIP


Electromagnetic Shower

distribution interpretation

Muonic Longitudinal profiles

Measuring the muonic profile -Muon Production Depth (MPD)

Understand the 'muon excess' problem at Auger

$$N_{\mu}=2.13\pm0.04(stat)\pm0.11(syst)$$
 with respect to QGSJET-II protons at $10^{19}eV$

Conclusion

Electromagneti and muonic cosmic ray shower profiles

Diogo on behalf of the Auger Group at LIP

Electromagnetic Shower

Amax distribution interpretation

Muonic Longitudinal

- Auger data presents particle physics puzzles
- the longitudinal profiles of both the electromagnetic and muonic component are the key for building powerful observables
- the LIP Auger team is deeply involved in this task

Backup

Electromagneti and muonic cosmic ray shower profiles

Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower

distribution interpretation

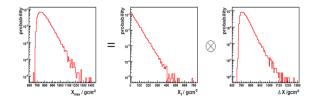
Muonic Longitudina profiles

Measuring the muonic profile -Muon Production Depth (MPD)

BACKUP SLIDES

Cross-section measurement

Electromagneti and muonic cosmic ray shower profiles


Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

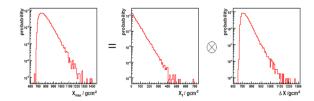
distribution interpretation

Muonic Longitudinal profiles

Measuring the muonic profile -Muon Production Depth (MPD)

 X_1 is an interaction length, and therefore follows an exponential distribution

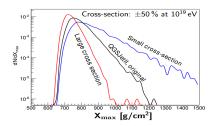
Cross-section measurement


Electromagneti and muonic cosmic ray shower profiles

Diogo on behalf of the Auger Group at LIP

Electromagnetic Shower

Longitudinal

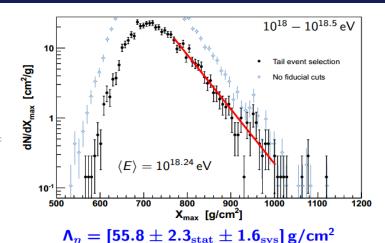

Measuring the muonic profile -Muon Production Depth (MPD)

 X_1 is an interaction length, and therefore follows an exponential distribution

The end of the X_{max} distribution tail is dominated by this exponential ightarrowcross section measurement

$$\sigma_{in} = 1/\overline{X_1}$$

Cross-section measurement


Electromagneti and muonic cosmic ray shower profiles

Francisco
Diogo
on behalf of
the Auger
Group at LIP

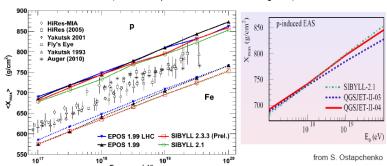
Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

Learning from the LHC

Electromagnet and muonic cosmic ray shower profiles


Francisco
Diogo
on behalf of
the Auger
Group at LIP

Electromagnetic Shower Profile

distribution interpretation

Muonic Longitudinal profiles

- Cross section and multiplicity fixed at 7 TeV
 - → smaller <X_{max}> for EPOS and larger for QGSJETII
 - re-tuned model converge to old Sibyll 2.1 predictions
 - → reduced uncertainty from ~50 g/cm² to ~20 g/cm² (difference proton/iron is about 100 g/cm²)

