Márcia Quaresma LIP - Lisbon April 22, 2012 ### Outline - Introduction to the Drell-Yan (DY) process - Goals of its measurement @ COMPASS - COMPASS Experiment Spectrometer description - Feasibility of the measurement - Acceptances, event rates and statistical errors ## Drell-Yan process Annihilation of a $q\bar{q}$ pair from a 2 hadrons collision, originating a lepton pair - Strong DY cross section decreases with the dimuon mass ($\sigma \propto M^{-4}$). - The Drell-Yan signal is very clean above $4 \text{ GeV}/c^2$ dimuon mass. It is the region where we are interested in. Dimuon mass distribution for p @ 400 GeV/cin a Pb target (NA50 Collaboration) ## Drell-Yan angular distribution The angular distribution of the DY events can be written as: $$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}[1+\lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi]$$ The Lam-Tung sum rule $|1 - \lambda - 2\nu = 0|$ relates the modulation amplitudes of the DY process. The collinear hypothesis implies: $\lambda=1$, $\mu=0$, $\nu=0$. This hypothesis was shown to be violated by the NA10 (CERN) and E615 (Fermilab) experiments. They measured a modulation of $\cos 2\phi$ up to 30% This means we cannot neglect the intrinsic transverse momentum k_T of quarks inside hadrons. #### Polarized DY @ COMPASS The nucleon structure in first order QCD is described by: - 3 PDFs in collinear approximation - ullet 8 PDFs taking into account the quark intrinsic transverse momentum, k_T #### COMPASS will access 4 of them: - Transversity h₁: describes the difference between the density number of quarks with parallel and anti-parallel spin w.r.t. the transversely polarised, relatively to the beam direction, father hadron - Boer-Mulders h_1^{\perp} : describes the correlation between the transverse spin and the transverse momentum of a quark in an unpolarised nucleon - Sivers f₁^{\(\tau\)}: describes the influence of the nucleon transverse spin in the transverse momentum distribution of the guark - Pretzelosity h_{1,T}: describes the transverse polarization of a quark, along its intrinsic transverse momentum direction #### Polarized DY @ COMPASS Arnold et al. derived the full expression of the σ_{DY} , for arbitrarily polarized beam and target. Having an unpolarized beam and a transversely polarized target the σ_{DY} in LO can be written as: $$\begin{split} \frac{d\sigma}{d^4qd\Omega} &= \frac{\alpha_{em}^2}{Fq^2} \hat{\sigma}_U \{ (1 + D_{[\sin^2\theta]} \middle| A_U^{\cos 2\phi} \middle| \cos 2\phi) \\ &+ |\overrightarrow{S}_T| [\middle| A_T^{\sin\phi_S} \middle| \sin \phi_S + D_{[\sin^2\theta]} (\middle| A_T^{\sin(2\phi + \phi_S)} \middle| \sin(2\phi + \phi_S) \\ &+ \middle| A_T^{\sin(2\phi - \phi_S)} \middle| \sin(2\phi - \phi_S))] \} \end{split}$$ #### where: - ullet θ and ϕ are the polar and azimuthal angles of μ^+ in the Collins-Soper reference frame - ullet $\phi_{\mathcal{S}}$ is the angle between the transverse spin of the target nucleon and the transverse momentum of the γ^* - ullet F is given by $F=4\sqrt{(P_\pi\cdot P_ ho)^2-M_\pi^2M_ ho^2}$ - q is the γ^* four-momentum - \bullet $\hat{\sigma}_{\it U}$ is the part of the cross-section surviving the integration over the angles ϕ and $\phi_{\it S}$ - $|\overrightarrow{S}_T|$ is the target polarization value - \bullet $D_{[\sin^2 \theta]}$ is the virtual photon depolarization factor The azimuthal asymmetries A contain a convolution of 2 PDFs of the target and beam hadrons. ¹S. Arnold et al, Phys.Rev. D79 (2009)034005 #### DY vs SIDIS The Sivers (f_{1T}^{\perp}) and the Boer-Mulders (h_1^{\perp}) functions are time-reversal odd functions. This leads to the prediction that they must change sign when accessed from DY or SIDIS². $$f_{1TDY}^{\perp} = -f_{1TSIDIS}^{\perp}$$ $$h_{1\ DY}^{\perp} = -h_{1\ SIDIS}^{\perp}$$ The experimental confirmation of this sign change is considered a crucial test of non-perturbative QCD. ²J.C. Collins, Phys. Lett. B536 (2002) 43, J.C. Collins, talk at LIGHT CONE 2008 ## COMPASS @ CERN #### COmmon Muon Proton Apparatus for Structure and Spectroscopy ## Experimental setup - Beam telescope: - SciFis - Large Angle Spectrometer (LAS): - SM1 magnet - Tracking detectors - RICH - ECAL1 - HCAL1 - Muons Filter 1 - Small Angle Spectrometer (SAS): - SM2 magnet - Tracking detectors - ECAL2 - HCAL2 - Muons Filter 2 ### Feasibility of the measurement In 2007, 2008 and 2009 short Drell-Yan beam tests were performed, to check the feasibility of the measurement, 2009 test was done using: - \bullet π^- beam @ 190 GeV/c - Two target cells (polyethylene) with 40 cm length and 5 cm diameter, spaced by 20 cm - A prototype of an absorber: - \bullet Two blocks, of concrete and stainless steel, 100 cm length each, and 80 \times 80 cm^2 in transverse dimensions each - A beam plug, inside the central part of absorber, made of W and steel disks. Radiation and interaction lengths: #### For muons: (multiple scattering) $$x/X_0 = 66.17$$ # For pions: (stopping power) $$x/\lambda_{int} = 6.69$$ ### 2009 beam test - results #### COMPASS DY beam test 2009 #### 2009 beam test - results Huge number of events due to the fact we didn't have a dimuon trigger. #### 2009 beam test - results Huge number of events due to the fact we didn't have a dimuon trigger. Large mass resolution due to problems in reconstruction program. ## Current setup status The proposal setup was in the meanwhile optimized. The newer version is: - Two target cells (NH₃) inside the dipole with 55 cm length and 4 cm diameter, spaced by 20 cm; - The absorber is 236 cm long, made of Al₂O₃; - The plug inside the absorber is made of 6 disks of W, 20 cm long each and 20 cm of Alumina in the most downstream part (total of 140 cm). Radiation and interaction lengths: #### For muons: (multiple scattering) $x/X_0 = 33.53$ (66.17 for 2009 absorber) #### For pions: (stopping power) $x/\lambda_{int} = 7.25$ (6.69 for 2009 absorber) ## Current setup status - results ## Acceptances, event rates and statistical errors The dimuons acceptance in the High Mass Region (HMR) is 39%. The accepted dimuons are: $$\bullet$$ μ_1 (1st spectrometer) & μ_2 (1st spectrometer) - 22% $$\bullet$$ μ_1 (2nd spectrometer) & μ_2 (2nd spectrometer) - 2% $$\bullet$$ μ_1 (1st spectrometer) & μ_2 (2nd spectrometer) - 18% We expect an DY event rate of 900 events/day in the HMR assuming: $$\bullet$$ π^- beam with 190 GeV/c • $$I_{beam} = 6 \times 10^7 \ particles/s$$ • $$L = 1.2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$$ Assuming two years of data taking we expect the following statistical errors in azimuthal asymmetries: | Asymmetry (%) | $4 < M_{\mu\mu} < 9~GeV/c^2$ | |-----------------------------------|------------------------------| | $\delta A_U^{\cos 2\phi}$ | 0.43 | | $\delta A_T^{\sin \phi_S}$ | 1.34 | | $\delta A_T^{\sin(2\phi+\phi_S)}$ | 2.70 | | $\delta A_T^{\sin(2\phi-\phi_S)}$ | 2.70 | # Azimuthal asymmetries and statistical errors Unpolarized PDF Sivers M. Anselmino *et al*, Phys. Rev. D 79 (2009) 054010 α_{AB} α Boer-Mulders 3. Zhang *et al.* Boer-Mulders B. Zhang *et al*, Phys. Rev. D 77 (2008) 054011 Transversity A. N. Sissakian *et al*, Phys. Part.Nucl. 41: 64-100, 2010 ## Summary - The opportunity to study, with the same spectrometer, the TMD PDFs from both SIDIS and the DY processes is unique. - The sign change in Sivers and Boer-Mulders functions when accessed by DY and SIDIS will be checked. - The feasibility of the measurement was proven after three successful beam tests. - The COMPASS II Proposal was approved by CERN for a first period of 3 years including 1 year for Drell-Yan. - Drell-Yan data taking will start in 2014. #### **BACKUP SLIDES** #### Polarized DY @ COMPASS The azimuthal asymmetries A contain a convolution of 2 PDFs of the target and beam hadrons: - ullet $A_U^{\cos2\phi}$ gives access to the Boer-Mulders functions of both incoming hadrons. - $A_T^{\sin \phi_S}$ gives access to the unpolarised PDF of beam hadron and the Sivers function of the target nucleon. - $A_T^{sin(2\phi+\phi_S)}$ gives access to the Boer-Mulders function of the beam hadron and to the pretzelosity function of the target nucleon. - $A_T^{sin(2\phi-\phi_S)}$ gives access to the Boer-Mulders function of the beam hadron and to the transversity function of the target nucleon. We need to disentangle the PDFs in each of these asymmetries \Rightarrow it requires some input. # J/ψ duality The J/ψ duality corresponds to consider a possible analogy in the production mechanisms of both J/ψ and γ^* . Studying the charmonium mass region in the dilepton decay channel: - $lacktriangledisplays \begin{picture}(10,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}}$ - ② Access PDFs from J/ψ events larger statistics available #### Feasibility of the measurement In 2007, 2008 and 2009 short Drell-Yan beam tests were performed, to check the feasibility of the measurement. #### 2007 test: - open spectrometer (without hadron absorber) - ullet π^- beam @ 160 GeV/c and an unpolarized NH_3 target - ullet we collected $\simeq 90000$ dimuons in $\lesssim 12$ hours - ullet validation of the J/ψ yields expected - verification of the spectrometer response and radiation doses #### 2008 test: - open spectrometer (without hadron absorber) - increase of the beam intensity - high occupancy of detectors closer to the target region ⇒ proof that is mandatory the use of an absorber