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2 ASICs - 2x192 channels (50 MHz)

2 high-speed dual ADC (10bits, 50 MHz)

1 LVDS ChannelLink Serializer (2.4 Gbps)

4x8 matrix (BaSO4 walls)

7.4 g.cm-3

ε ≈ 82% @ 511 keV

LYSO:Ce 2x2x20 mm3

S8550 APDs

Detector modules

Application-Specific Integrated Circuit (ASIC) for APD readout

ClearPEM Supermodule

511 keV
γγγγ

γγγγ

APD pixel

APD pixel

Front-End Electronic Boards (FEBs)

AMS 0.35 μm CMOS, 70 mm2Light sharing readout scheme

1. A Short Review on the ClearPEM Front-end Electronics



PET: strong magnetic fields (7T) :: pulsed RF :: switched gradient fields

� Avalanche Photodiodes (APDs) are insensitive to B0

� Front-end Electronics: EMI with pulsed RF power†

� Time-varying magnetic fields will induce electromotive forces (εind) in closed circuits††

� Lorentz forces on power conductors parallel to B0 field lines 

MRI: magnetic susceptibility of PET materials :: RF interference :: loss of SNR

� Required highly homogeneous Bo (< 1 PPM) to avoid image susceptibility artifacts

� MRI signal is very low: susceptible to be contaminated by high-frequency fields radiated by digital electronics

� EMI should be minimized -> loss of SNR -> loss of MRI sensitivity

Mutual Electromagnetic Interference (EMI)

††switched gradient fields B(r,t) 
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2. PET-MR Electromagnetic Compatibility Issues



� EM Shielding behave like an antenna avoiding EMI between PET 

front-end electronics and RF coils 

� BUT it will also absolve RF power from RF coils (lowering SNR)

� and leading to B1 inhomogeneities inside RF coil FOV

� surface Eddy Currents are induced by switched gradient fields

� minimize eddy currents by fragmentation of shielding foil

Other PET-MR system integration problems

� Digital data transmission

� Cabling and power consumption 

� Cooling system

� Mechanical structure

� Space constrains 

Electromagnetic Shielding to avoid mutual EMI
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2. PET-MR Electromagnetic Compatibility Issues



3. 7T Magnet Facility

Center for Biomedical Imaging 

Lausanne, Switzerland 

� the 1st ultra-high field 7T for brain imaging 

installed in Europe in 2008 

� inner diameter of ~30 cm

� dedicated Lab for the research and 

development on RF Coils

14.1T small-animal RF coil

7T human brain RF 

surface coil



4.1. RF Interference from MR RF Coils

RF power 

amplifier

RF signal generator

Gate/pulse 

envelope generator

to RF coil

RF Pulse Amplifier (100-600 MHz BW)
TOMCO Technologies BT00100-Delta, 100W

RF Signal Generator (9 kHz-3 GHz)
Agilent N9310A

20 MHs Waveform Generator
Agilent 33220A

RF Gate

RF

176Lu events (LYSO)

Agilent Infinium 1GHz 4GSa/s

300 MHz (-10dBM = 100μW)

TTL 5V, 1ms, 0.1 kHz

300 MHz (250W)

4. Mutual Electromagnetic Interference Tests and Analysis

An Introduction ….

Analog ASIC Output
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4.1. RF Interference from MR RF Coils

4. Mutual Electromagnetic Interference Tests and Analysis

Analog pipeline memory

Time Calibration

Dataframes digitized on 

10 bit ADCs

Offline waveform recovery

Review on ASIC data readout

RF Pickup

297MHz 1H (7T) 

resonance frequency

clean Pulse

FFT



Repetition Time = 1000 ms

Gate width = 2 ms 

RF frequency = 297 MHz 1000 ms

2 msRF pulse sequence
4.1. RF Interference from MR RF Coils

4. Mutual Electromagnetic Interference Tests and Analysis

RF pulse

Charge saturation on the 

analog memories of the 

ASIC

� Pulsed RF tolerance of the front-end electronic boards was assessed as function of the RF Power

� At P<50W, the LVDS analog output of the ASIC rejects common-mode RF noise pickup

� At a maximum P=2.8kW, we have observed a saturation of the front-end ADCs dynamic range during the RF pulse,

and a self-triggering state induced by RF eddy currents that create a burst of events remaining over 1.2 ms after the

RF pulse

� EMI shielding have shown to be very efficient if well designed
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Pick-up noise spectrum | PET front-end in situ
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Pick-up noise spectrum (narrow band for 300 MHz) | PET front-end in situ
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Pick-up noise spectrum | PET front-end away from RF Coils
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Pick-up noise spectrum (narrow band for 300 MHz) | PET front-end away from RF Coils

 

 

coil 1

coil 2

Agilent 4396B Spectrum Analyzer

50 MHz high-frequency 

clock harmonics

4.2. RF Interference from PET Front-End Electronics

4. Mutual Electromagnetic Interference Tests and Analysis

. . .

Propagation of pickup 

noise into the RF 

receiver chain



006 localiser, PET present, all off
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MR image of a saline phantom

Localizer 006 vs 007

4.2. RF Interference from PET Front-End Electronics

4. Mutual Electromagnetic Interference Tests and Analysis



006 localiser, PET present, all off
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008 localiser, PET present, low voltage supply + threshold + clock on
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Solution: shift the clock frequency 

from 50 MHz to 52.5 MHz ☺☺☺☺

4.2. RF Interference from PET Front-End Electronics

4. Mutual Electromagnetic Interference Tests and Analysis

MR image of a saline phantom

RF artifacts

+

Popcorn noise



Echo-Planar Imaging (EPI) Readout Sequence 

CH2 - Slice Selection

CH3 - phase encoding

CH4 - frequency encoding

TR = 500 ms

Rise time = 50 us

Time position for RF 
pulses 2ms  

Magnetic Field Gradients: linearly varying magnetic fields applied in addition to the

main magnetic field B0 to achieve spatial encoding (just as a single voxel localization)

4.3. Gradients Effects on PET Front-End Electronics

4. Mutual Electromagnetic Interference Tests and Analysis

An Introduction ….



4.3. Gradients Effects on PET Front-End Electronics

4. Mutual Electromagnetic Interference Tests and Analysis

ringing distortion

High slew-rate 

gradient 

transitions

Burst of spurious 

events

Analog ASIC Output

Analog ASIC Output

Gradient induced eddy currents on front-end

boards power/ground planes causes ASIC

baseline distortions and false events with a

characteristic “saturated” waveform



( )
s0s

χ+1B=B

� B0 required to be strong but highly homogeneous < 10-6 (1 PPM)

� weakly magnetic materials (low χ
v
) causes local magnetic field distortions

� object shape, orientation and vol. susceptibility χ
v 
determine spatial field distortions 

� B0 field distortions -> susceptibility image artefacts

� PET materials should be magnetic compatible 

� Susceptibility artifacts must be evaluated

� Known non-uniformity B0 maps -> possible corrections by shim coils

Material 
Volume magnetic 

susceptibility, χv (SI)

gold -34x10-6

copper -9.63x10-6

water (37ºC) -9.05x10-6

human tissues -11.0 to -7.0x10-6

graphite* -8.5x10-6

silicon -4.2x10-6

aluminium 20.7x10-6

Detector Modules

Front-End Electronics Boards

Cables and Connectors

Cooling Plates

Mechanical Structure

Shielding Foils 

4.4. MRI Susceptibility Artifacts caused by PET materials

4. Mutual Electromagnetic Interference Tests and Analysis

An Introduction ….



RF coil

T0 T1 T2 T3 T4 T5

Water phantom Steel core wire PCB (Copper+FR4) PCB assembled PCB assembled PCB assembled

Preliminary evaluation of magnetic susceptibility 

image artefacts caused by PET front-end materials

T1, T2, T3

T4

T5

4.4. MRI Susceptibility Artifacts caused by PET materials

4. Mutual Electromagnetic Interference Tests and Analysis
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4.4. MRI Susceptibility Artifacts caused by PET materials

4. Mutual Electromagnetic Interference Tests and Analysis

036p B0 map, PET head stage + cables present, located at top left of phantom
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