First measurement of B(t→Wb)/B(t→Wq) in the dilepton channel in pp collisions at s¹/2=7 TeV

CMS-PAS-TOP-11-029

Pedro Ferreira da Silva (CERN/LIP) on behalf of the LIP/CMS group

Introduction

Top decays promptly without hadronizing ►

 Lifetime too short to break colored strings connecting to proton remnants

t → Wb dominates

- → Prompt decay → direct access to V_{tb}
- → |V_{ub}| and |V_{cb}| measured to be very small (from B meson decays)
- Unitarity + 3 generations imply that

$$|V_{tb}| = 0.998 @ 90\%CL$$

- Generic quantity, relies on ability to identify jets from b hadronization
- Latest measurements from Tevatron seem to indicate some tension with the SM prediction

$$\mathcal{R} = \frac{B(t \to Wb)}{B(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

$${\cal R} = 0.91 \pm 0.09 \; ({
m stat + syst}) \; \; {
m CDF \; prelim. \; 7.5 \; fb^{-1}}$$
 ${\cal R} = 0.90 \pm 0.04 \; ({
m stat + syst}) \; \; {
m D0 \; PRL \; 107, \; 121802 \; (2011)}$

Sample used for the measurement

- We use the dilepton channel
 - Smallest branching ratio (~6.5%)
 - Lowest contamination from background
- 6263 evts selected from 2.2 fb⁻¹ of data
 - \Rightarrow ≥ 2 leptons p₊>20 GeV |η|<2.5
 - \Rightarrow ≥ 2 jets p₊>30 GeV |η|<2.5
 - ► E_T^{miss}>30 GeV for same flavor channel
 - → **Expect S/B=0.92** (0.70) for eμ (ee/μμ)
- Events are categorized according to the number of jets
 - What is the contamination from background?
 - → How many t → Wq decays did we reconstruct?

use datadriven estimates

Channel	ee	μμ	еµ	
2 jet				
Di-bosons	13 ± 3	15 ± 3	41 ± 8	
Single top	34 ± 13	44 ± 16	113 ± 42	
W+jets	10 ± 7		12 ± 7	
$Z/\gamma^* \to \ell\ell$	323 ± 48	415 ± 67	160 ± 25	
other tt	5 ± 1	0.9 ± 0.4	8 ± 1	
t t dileptons	544 ± 50	710 ± 100	1905 ± 179	
Total expected	929 ± 71	1184 ± 122	2238 ± 186	
data	907	1088	2424	

3 jet				
Di-bosons	2 ± 1	3 ± 1	7 ± 2	
Single top	11 ± 4	13 ± 5	36 ± 14	
W+jets	0.1 ± 0.1			
$Z/\gamma^* \to \ell\ell$	106 ± 16	136 ± 12	30 ± 5	
other tt	3 ± 1	2 ± 1	8 ± 1	
tt dileptons	273 ± 25	349 ± 50	958 ± 90	
Total expected	394 ± 30	504 ± 55	1040 ± 92	
data	345	472	1027	

Signal or background?

- Background may mimic top quark decays / jets from top decays fails selection
 - → ISR, underlying event, multi-parton interactions, pileup contaminate the sample

 Experimental handle - the kinematics of the lepton-jet system from the same decay:

$$M_{
m lj} \leq \sqrt{m_t^2 - m_W^2}$$

- Wrong lepton-jet assignments are approximately combinatorial (model with event mixing techniques)
- Wrong assignments dominate in the tails
- Use the tails to normalize the misassignment contribution

Signal or background?

- Background may mimic top quark decays / jets from top decays fails selection
 - → ISR, underlying event, multi-parton interactions, pileup contaminate the sample

 Experimental handle - the kinematics of the lepton-jet system from the same decay:

$$M_{
m lj} \leq \sqrt{m_t^2 - m_W^2}$$

lepton-jet pair counting after subtraction measures N(t→Wq) reconstructed —

Displaced

Secondary

Measuring R in dilepton events

- Use a b-tagging discriminator algorithm
 - → heavy flavor jets have displaced tracks, secondary vertices, soft leptons, ...
 - count number of jets identified as b jets
 - compare with expectations to measure 0, 1, 2, 3 b-tags
- Model based on R and data driven estimates of b-tag/mistag efficiencies (from dijet events), N(t→Wq) and background level (from selected sample)

Results

- From a profiled likelihood ratio fit we measure: $R=0.98\pm0.04~({
 m stat}\oplus{
 m syst})$

 - Consistent among different dilepton channels
 - Main uncertainties: b-tag uncertainty (3%) and fraction of correct assignments (2%)
- Imposing the physical bound (R≤1) with Feldman-Cousins approach R>0.85 @ 95% CL

Conclusions

- We are gaining knowledge on the nature of top decays at the LHC
- First measurement of R at the LHC is the most precise so far
- Result is consistent with the SM predictions

Backup

Data-driven estimation of Drell-Yan

- Main background in the same flavor channels
- Use the angle between the two leptons:
 - → enough statistics in data to explore angular correlation in DY → II decays.
 - → data-driven model for θ_{\parallel} from low E_{\perp}^{miss} region (<30 GeV)

Fit DY contribution in the final sample from binned likelihood fit

Systematics

Table 3: Summary of the systematic uncertainties affecting the measurement of *R*. The values for the uncertainties are absolute.

Source	Uncertainty
ε_b	0.031
ϵ_q	0.011
Jet energy scale	0.002
Jet energy resolution	0.004
Pile-up	0.006
Q^2	0.023
Jet-parton matching scale	0.011
DY contamination	0.012
tt contribution	0.002
Total	0.044

R and b-tag efficiency

- Can't be measured simultaneously from data: 100% correlation
- Scan to find consistency between dijet based measurement of ε_h given as input

We use the Feldman-Cousins approach - cf. PRD 57 3873 (1998) to impose the physical constraint at R≤1

- We scan R in the range [0,1]
 - generate toy experiments (3x10³) and compute the profile likelihood where all nuisance parameters are profiled to take systematics into account)
 - Profile likelihood is used as test statistics $t = 2\log\frac{\mathcal{L}(y|R_{obs},\hat{\vec{v}})}{\mathcal{L}(y|R_{obs},\hat{\vec{v}})}$ Define the upper acceptance
 - Define the upper acceptance given a CL from t distribution
 - \blacksquare If $t_{data} < t_{upper}$ the point is accepted in the F-C interval
 - inverting the function we find the corresponding R_{obs}

Final confidence interval on R

- The CI constructed by the F-C approach corresponds graphically to the intersection of the test statistics in data with the upper acceptance curves for a given value of R
- We obtain R>0.85 @ 95% CL (with a statistical uncertainty of 0.008)

