First measurement of B(t→Wb)/B(t→Wq) in the dilepton channel in pp collisions at s¹/2=7 TeV **CMS-PAS-TOP-11-029** Pedro Ferreira da Silva (CERN/LIP) on behalf of the LIP/CMS group #### Introduction #### Top decays promptly without hadronizing ► Lifetime too short to break colored strings connecting to proton remnants #### t → Wb dominates - → Prompt decay → direct access to V_{tb} - → |V_{ub}| and |V_{cb}| measured to be very small (from B meson decays) - Unitarity + 3 generations imply that $$|V_{tb}| = 0.998 @ 90\%CL$$ - Generic quantity, relies on ability to identify jets from b hadronization - Latest measurements from Tevatron seem to indicate some tension with the SM prediction $$\mathcal{R} = \frac{B(t \to Wb)}{B(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$ $${\cal R} = 0.91 \pm 0.09 \; ({ m stat + syst}) \; \; { m CDF \; prelim. \; 7.5 \; fb^{-1}}$$ ${\cal R} = 0.90 \pm 0.04 \; ({ m stat + syst}) \; \; { m D0 \; PRL \; 107, \; 121802 \; (2011)}$ ## Sample used for the measurement - We use the dilepton channel - Smallest branching ratio (~6.5%) - Lowest contamination from background - 6263 evts selected from 2.2 fb⁻¹ of data - \Rightarrow ≥ 2 leptons p₊>20 GeV |η|<2.5 - \Rightarrow ≥ 2 jets p₊>30 GeV |η|<2.5 - ► E_T^{miss}>30 GeV for same flavor channel - → **Expect S/B=0.92** (0.70) for eμ (ee/μμ) - Events are categorized according to the number of jets - What is the contamination from background? - → How many t → Wq decays did we reconstruct? use datadriven estimates | Channel | ee | μμ | еµ | | |---------------------------|--------------|----------------|----------------|--| | 2 jet | | | | | | Di-bosons | 13 ± 3 | 15 ± 3 | 41 ± 8 | | | Single top | 34 ± 13 | 44 ± 16 | 113 ± 42 | | | W+jets | 10 ± 7 | | 12 ± 7 | | | $Z/\gamma^* \to \ell\ell$ | 323 ± 48 | 415 ± 67 | 160 ± 25 | | | other tt | 5 ± 1 | 0.9 ± 0.4 | 8 ± 1 | | | t t dileptons | 544 ± 50 | 710 ± 100 | 1905 ± 179 | | | Total expected | 929 ± 71 | 1184 ± 122 | 2238 ± 186 | | | data | 907 | 1088 | 2424 | | | 3 jet | | | | | |---------------------------|---------------|--------------|---------------|--| | Di-bosons | 2 ± 1 | 3 ± 1 | 7 ± 2 | | | Single top | 11 ± 4 | 13 ± 5 | 36 ± 14 | | | W+jets | 0.1 ± 0.1 | | | | | $Z/\gamma^* \to \ell\ell$ | 106 ± 16 | 136 ± 12 | 30 ± 5 | | | other tt | 3 ± 1 | 2 ± 1 | 8 ± 1 | | | tt dileptons | 273 ± 25 | 349 ± 50 | 958 ± 90 | | | Total expected | 394 ± 30 | 504 ± 55 | 1040 ± 92 | | | data | 345 | 472 | 1027 | | # Signal or background? - Background may mimic top quark decays / jets from top decays fails selection - → ISR, underlying event, multi-parton interactions, pileup contaminate the sample Experimental handle - the kinematics of the lepton-jet system from the same decay: $$M_{ m lj} \leq \sqrt{m_t^2 - m_W^2}$$ - Wrong lepton-jet assignments are approximately combinatorial (model with event mixing techniques) - Wrong assignments dominate in the tails - Use the tails to normalize the misassignment contribution # Signal or background? - Background may mimic top quark decays / jets from top decays fails selection - → ISR, underlying event, multi-parton interactions, pileup contaminate the sample Experimental handle - the kinematics of the lepton-jet system from the same decay: $$M_{ m lj} \leq \sqrt{m_t^2 - m_W^2}$$ lepton-jet pair counting after subtraction measures N(t→Wq) reconstructed — Displaced Secondary ## Measuring R in dilepton events - Use a b-tagging discriminator algorithm - → heavy flavor jets have displaced tracks, secondary vertices, soft leptons, ... - count number of jets identified as b jets - compare with expectations to measure 0, 1, 2, 3 b-tags - Model based on R and data driven estimates of b-tag/mistag efficiencies (from dijet events), N(t→Wq) and background level (from selected sample) #### Results - From a profiled likelihood ratio fit we measure: $R=0.98\pm0.04~({ m stat}\oplus{ m syst})$ - Consistent among different dilepton channels - Main uncertainties: b-tag uncertainty (3%) and fraction of correct assignments (2%) - Imposing the physical bound (R≤1) with Feldman-Cousins approach R>0.85 @ 95% CL #### Conclusions - We are gaining knowledge on the nature of top decays at the LHC - First measurement of R at the LHC is the most precise so far - Result is consistent with the SM predictions # Backup ### Data-driven estimation of Drell-Yan - Main background in the same flavor channels - Use the angle between the two leptons: - → enough statistics in data to explore angular correlation in DY → II decays. - → data-driven model for θ_{\parallel} from low E_{\perp}^{miss} region (<30 GeV) Fit DY contribution in the final sample from binned likelihood fit # **Systematics** Table 3: Summary of the systematic uncertainties affecting the measurement of *R*. The values for the uncertainties are absolute. | Source | Uncertainty | |---------------------------|-------------| | ε_b | 0.031 | | ϵ_q | 0.011 | | Jet energy scale | 0.002 | | Jet energy resolution | 0.004 | | Pile-up | 0.006 | | Q^2 | 0.023 | | Jet-parton matching scale | 0.011 | | DY contamination | 0.012 | | tt contribution | 0.002 | | Total | 0.044 | | | | # R and b-tag efficiency - Can't be measured simultaneously from data: 100% correlation - Scan to find consistency between dijet based measurement of ε_h given as input We use the Feldman-Cousins approach - cf. PRD 57 3873 (1998) to impose the physical constraint at R≤1 - We scan R in the range [0,1] - generate toy experiments (3x10³) and compute the profile likelihood where all nuisance parameters are profiled to take systematics into account) - Profile likelihood is used as test statistics $t = 2\log\frac{\mathcal{L}(y|R_{obs},\hat{\vec{v}})}{\mathcal{L}(y|R_{obs},\hat{\vec{v}})}$ Define the upper acceptance - Define the upper acceptance given a CL from t distribution - \blacksquare If $t_{data} < t_{upper}$ the point is accepted in the F-C interval - inverting the function we find the corresponding R_{obs} #### Final confidence interval on R - The CI constructed by the F-C approach corresponds graphically to the intersection of the test statistics in data with the upper acceptance curves for a given value of R - We obtain R>0.85 @ 95% CL (with a statistical uncertainty of 0.008)