Detailed simulations of a full-body RPC-PET scanner

M. Couceiro^{1,2}, P. Crespo¹, R. Ferreira Marques^{1,3}, P. Fonte^{1,2}

- ¹ LIP, Laboratório de Instrumentação e Física Experimental de Partículas, Coimbra, Portugal
- ² ISEC, Instituto Superior de Engenharia de Coimbra, Coimbra, Portugal
- ³ Departamento de Física da Universidade de Coimbra, Coimbra, Portugal

1. Introduction to PET

Brief PET overview

- PET is a medical imaging technique, aimed to study functional processes
- An appropriate molecule, labelled with a positron emitter radioisotope, is injected in the patient
- When a decay occurs, a positron is emitted, which loses energy in several collisions, combining then with an electron from the medium
- Since the positron is the electron antimatter, an annihilation occurs, resulting in two 511 keV photons emitted in opposite directions
- Annihilation photons, detected in an appropriate time window (4 to 12 ns), are recorded, defining a Line Of Response (LOR)
- Image is reconstructed from the acquired LOR

1. Introduction to PET

Brief PET overview

- Three types of coincidence events can occur
 - True coincidences: photons from a single decay leave the patient without suffering interactions
 - Scattered coincidences: one or both photons from a single decay interact in the patient, losing energy, and changing their initial direction
 - Random coincidences: photons from different decays detected in coincidence

False lines of response ⇒ must be rejected

1. Introduction to PET

Brief PET overview

State of the art PET scanners

- Scintillation crystal detectors with high efficiency for 511 keV photons and good energy resolution for scatter rejection
- Reduced Axial Field Of View
- Several bed positions to obtain a full body image
- Increased injected activity
- Discontinuous uptake signal

Full body PET scanner

- 5 Full Axial Field Of View
- Single bed position to obtain a full body image
 - Reduced injected activity
- 👱 Continuous uptake signal
- Too expensive with crystal detectors
- RPC may be a suitable detector for full body PET scanners

2. Resistive Plate Chamber

- Good timing resolution of 300 ps
 FWHM for photon pairs
- No energy resolution
- < 0.4% efficiency per gap for singles</p>

Simulations – Scanner geometry

Data processing – Dead time processing

- Each detector, has 10 independent transaxial readout sections (total of 800 for the scanner)
 - Non-paralyzable dead time for time signals
 - Paralyzable dead time for position signals

Time

3. RPC-PET

Data processing – Dead time processing (readout section)

Non-paralyzable dead time model applied to all simulation hits

$$\text{Hit } 1 \to \begin{cases} t_{h1} \\ x_{h1} \\ y_{h1} \\ z_{h1} \end{cases} \quad \text{Hit } 2 \to \begin{cases} t_{h2} \\ x_{h2} \\ y_{h2} \\ z_{h2} \end{cases} \quad \text{Hit } 3 \to \begin{cases} t_{h3} \\ x_{h3} \\ y_{h3} \\ z_{h3} \end{cases}$$

Readout generated time events

Event 1
$$\rightarrow$$

$$\begin{cases} t_{e1} = t_{h1} \\ x_{e1} = (x_{h1} + x_{h2})/2 \\ y_{e1} = (y_{h1} + y_{h2})/2 \\ z_{e1} = (z_{h1} + z_{h2})/2 \end{cases}$$
 Event 2 \rightarrow
$$\begin{cases} t_{e2} = t_{h3} \\ x_{e2} = x_{h3} \\ y_{e2} = y_{h3} \\ z_{e2} = z_{h3} \end{cases}$$

Paralyzable dead time model applied to all valid time events

Final Event

Fine position (3.44 mm binning in the radial direction, and 2 mm binning in the transaxial and axial directions)

Both events can be rejected or accepted with a coarse position (3.44 mm binning in the radial direction, 3 cm binning in the transaxial direction and 1 cm σ Gaussian blur in the axial direction)

Data processing – Coincidence sorter

Single time window coincidence sorter

Multiple time window coincidence sorter

Results – Scatter fraction (NEMA 2001)

Detector scatter is responsible for some long-range diffusion

? Best trigger ?

3. RPC-PET

Results – Time-Space patterns for coincidence

Results – Tested trigger strategies

Bore rejection

Geometric rejection

plus

Time-Space rejection

Geometric TOF rejection + 300 ps

Geometric TOF rejection

Results - Scatter fraction (NEMA 2001)

Single time window coincidence sorter

Multiple time window coincidence sorter

Results – Count rates and NECR, with position pileup rejection (NEMA 2001)

0.0 μ**s** dead time for position signal

Geometric rejection

Results – Count rates and NECR, with position pileup rejection (NEMA 2001)

0.5 μ**s** dead time for position signal

Geometric rejection

Results – Count rates and NECR, with position pileup rejection (NEMA 2001)

1.0 μ**s** dead time for position signal

Geometric rejection

Results – Count rates and NECR, with position pileup rejection (NEMA 2001)

3.0 μ**s** dead time for position signal

Geometric rejection

Results – Count rates and NECR, with coarse position (NEMA 2001)

Independent of dead time for position signal

Geometric rejection

Results – NECR for single coincidence pairs (NEMA 2001)

Results – NECR for multiple coincidence pairs (NEMA 2001)

Results – NECR for all possible coincidence pairs (NEMA 2001)

[M.Couceiro et al, 2012]

3. RPC-PET

Results – Spatial resolution (NEMA 2001)

4. Conclusions

- Disadvantages in comparison to crystal based detectors
 - Much smaller detection efficiency (20% to 50%)
 - No energy resolution (although energy sensitivity)
- Previous simulations suggested that RPC-PET will have a significant improvement in sensitivity over current technology
- Current simulations suggest that RPC-PET has higher scatter fractions than those present in current crystal based PET scanners, which however do not compromise system performance, as measured by the NEMA NU-2 2001
- However, it is still necessary to test the spatial resolution at high count rates, and image quality as stated in NEMA NU-2 2001 protocol to conclude if coarse position policy can effectively be used to further increase NECR

Acknowledgments

- Laboratory for Advanced Computation (LCA) of the University of Coimbra, Portugal, for a very generous gift of computing time (300,000 hours)
- Miguel Oliveira, of the LIP computing center, for his prompt response and availability to solve computational problems, including storage ones