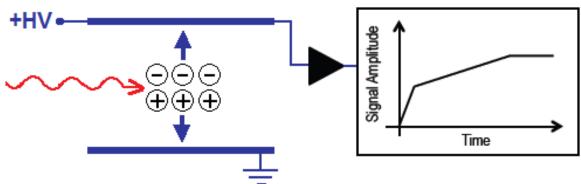

Jornadas 2012

21 a 23 de Abril de 2012

Pavilhão do Conhecimento, Lisboa

Ion Transport Processes in Gaseous Detectors for Particle Physics

(CERN/FP/123613/2011)



APPLICATIONS AND INTEREST

The study of ion transport in gases is a field of great interest in various areas:

1. Physical Processes in Gaseous Radiation Detectors

2. Ion Mobility Spectrometry → Technique that aims at identifying ionized molecules in a gas based on their mobility in a carrier buffer gas.

Main properties of interest:

- identification of the different ion species present;
- $\$ calculation and/or measurement of ion mobilities, K_0 , and diffusion coefficients both transversal, D_T and longitudinal, D_L .

APPLICATIONS AND INTEREST

The information available in the literature for ion transport properties in gaseous mixtures for particle physics detectors

is incomplete:

\clubsuit does not identifies the	
types of ions present	
(molecular, monoatomic, e	etc.)

- nor the dependence of the mobilities on the reduced electric fields (E/N);
- nor gives information about diffusion coefficients.

Ion Transport Properties:
http://consult.cern.ch/writeup/garfield/
examples/gas/trans2000.html

- , - , - , - , - , - , - , - , - , - ,			
Gas	Ion	Mobility	Reference
		[cm ² /V.sec]	
Ar	Ar ⁺	1.00	
Ar	Methylal ⁺	1.51	
iC_4H_{10}	Methylal ⁺	0.55	[38]
Methylal	Methylal ⁺	0.26	[38]
iC ₄ H ₄₁₀	$iC_4H_{10}^{+}$	0.614	
Ar	CH ₄ ⁺	1.87	[4]
CH ₄	CH ₄ ⁺	2.26	[38]
Ar	CO ₂ ⁺	1.72	
CO ₂	CO ₂ ⁺	1.09	[38]
C_2H_6	$C_2H_6^+$	1.23,1.24	[38]
CF ₄	$C_2H_6^+$	1.04	[2,4]
C ₃ H ₈	C ₃ H ₈ ⁺	0.793	[2]
CF ₄	CH ₄ ⁺	1.06,1.07	[2]
DME	DME ⁺	0.56	[2,4]
CF ₄	$C_2H_6^+$	1.04	[3]
CF ₄	C ₃ H ₈ ⁺	1.04,1.05	[2]
CF ₄	iC ₄ H ₁₀ ⁺	1.00	[2]
Ar	CH₄ ⁺	2.07,1.87	[2,4]
Ar	$C_2H_6^+$	2.06,2.08	[2,4]
Ar	C ₃ H ₈ ⁺	2.08,2.07	[2,4]

 $iC_4H_{10}^+$

2.15.1.56

RECENT WORK

In recent work, using a new experimental technique developed by us, we have shown that more than one type of ion may be present simultaneously in a pure gas or in a gaseous mixture:

THE JOURNAL OF CHEMICAL PHYSICS 133, 124316 (2010)

Experimental measurement of the mobilities of atomic and dimer Ar, Kr, and Xe ions in their parent gases

P. N. B. Neves, 1,a) C. A. N. Conde, and L. M. N. Távora 1,2

¹Departamento de Física, Centro de Instrumentação, Unidade 217/94, Universidade de Coimbra,

Coimbra P-3004-516, Portugal

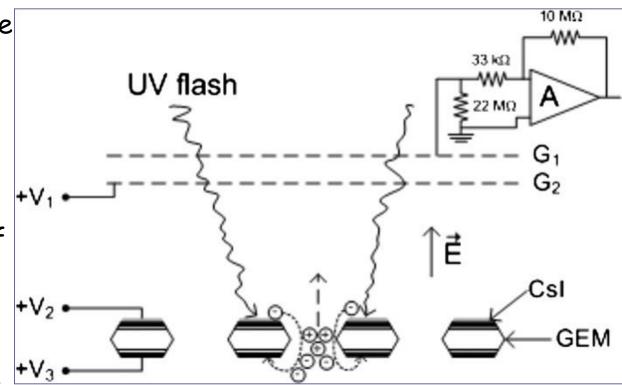
²ESTG, Instituto Politécnico de Leiria, Morro do Lena-Alto Vieiro, Leiria P-2411-901, Portugal

(Received 23 June 2010; accepted 16 September 2010; published online 29 September 2010)

2060

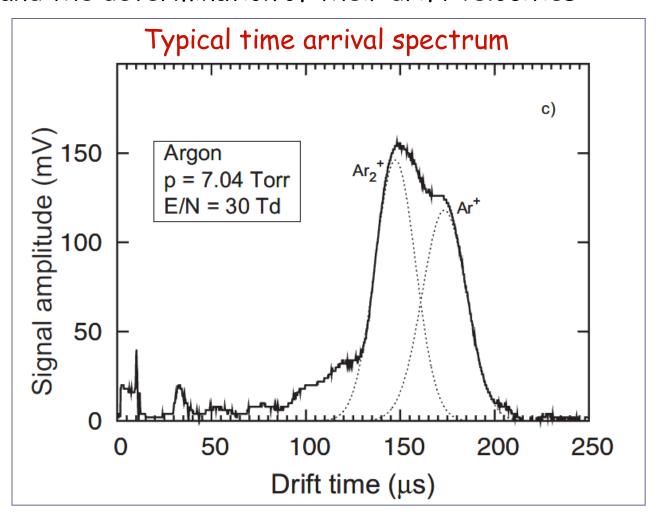
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 4, AUGUST 2011

Experimental Measurement of the Ne⁺ and Ne₂⁺ Mobilities in Ne and the Reaction Rate Coefficient for Ne⁺ + 2Ne \rightarrow Ne₂⁺ + Ne


P. N. B. Neves, A. N. C. Garcia, A. M. F. Trindade, J. A. S. Barata, L. M. N. Távora, and C. A. N. Conde, *Life Member, IEEE*

RECENT WORK

- A pulsed Xe UV lamp releases electrons from a CsI covered GEM which start an avalanche producing a variety of positive ions;
- Ions drift towards a collecting grid shielded by a Frisch grid.
- The number and type of ions can be controlled by varying the GEM voltage.
- It may be used to make measurements at high pressures and low E/N values.


Experimental System:

RECENT WORK

 A time-of-flight spectrum generally allows positive ion identification and the determination of their drift velocities:

The drift-time spectrum shows two distinct peaks, corresponding to two types of ions with different mobilities

WORK TO BE CARRIED OUT

- 1. Theoretical calculations of low energy ion-atom/molecule elastic scattering cross sections and calculation of ion transport parameters:
 - Calculation of differential and integral elastic collision cross sections, for center-of-mass energies in the 0.001 eV to 10 eV energy range, using the JWKB approximation and interaction potentials taken from the literature for:
 - Monte Carlo calculation of the diffusion coefficients, D_T and D_L , and mobilities, K_O , of Ar and CH_4 ions in their parent gases and in gaseous mixtures of Ar/CH_4 .

WORK TO BE CARRIED OUT

2. Experimental measurement of ion mobilities:

- Improvement of the experimental system making possible the measurement of drift time with better resolution;
- Identification of the ions present in gaseous mixtures with interest for high energy physics detectors like Ar/CH_4 and Ar/C_2H_6 ;
- And experimental measurement of their mobilities.

Ion Transport Processes in Gaseous Detectors for Particle Physics

Research Team

Project coordinator: João Barata

Name	Status	% of time in project
Alexandre F. Trindade	Master (LIP)	40
Carlos Conde	Researcher (LIP)	20
Filipa Borges	Researcher (LIP)	20
João Barata	Researcher (LIP/UBI)	40
Mangiarotti Alessio	Researcher (LIP)	20
Filomena Santos	Researcher (LIP)	15
Pedro Neves	Researcher (ATP-Group, CMAF)	15
Teresa Dias	Researcher (LIP)	20