The EndoTOFPET-US front end & data acquisition system

Ricardo Bugalho Jornadas LIP, April 22nd 2012

What is EndoTOFPET-US?

Ultra-Sound transducer

PET head 0.8x0.8x10 mm³ crystal filbers coupled to digital SiPMs

External 20.5x20.5 cm² PET plate 4096 3x3x15 mm³ crystals coupled to SiPM

Very high background event rate (40 MHz)

200 ps time resolution required for background rejection

LIP's contribution

- External plate front end
 - A suitable ASIC in collaboration with INFN
 - Front End Boards

Data Acquisition System

ASIC requirements

- SiPM readout
- <200 ps time resolution</p>
- Suitable for dense systems (10 channels/cm²)
 - Monolithic
 - Fully digital Time & Energy readout
 - < 10 mW/channel

Two transimpedance stages generate two replicas for time and energy measurement; respectively, a fast trigger and a shaped signal.

The low noise front-end allows setting the threshold of the discriminator at 0.5 photoelectrons for the time stamp DOT_in.

Energy is calculated after calibration of the time-over-threshold of DOE_in. Both measures are based on a low-power analogue time-to-digital converter with 50ps time binning.

Expected power consumption per channel is 7mW.

Low input impedance stage (Input resistance trimming to match line impedance) allows fine adjustment (6-bit over 500mV range) of the HV bias of the SiPM*. Two independent input stages permit the use of devices with different polarities: h-collection (bottom left) or e-collection (top left).

* Each 16 SiPM array has a common, but adjustable bias (14-bit over 0-100V).

TDC operating principle

wtac_* start at the edge of the discriminator edge but stop at a (known) clock edge wtac_* control the charging of a capacitor with a current source

⇒ voltage in the capacitor reflects phase between discriminator edge and clock edge

Afterwards, voltage in capacitor is discharged 128x more slowly

 \Rightarrow phase between event and clock is measured in 1/128th clock (48 ps for a 160 MHz clock)

Front-end

Data Acquisition System

Summary

- ASIC design is almost complete
 - Submission May 21st 2012
 - Validation in 3rd quarter 2012
- Front-end Board design pending
 - ASIC pinout
 - Plate geometry decisions
- DAQ card design is done
 - Under assembly
- Firmware & Software will start in July

Thank you for your attention