Jornadas do LIP 2012

Reassessment of structural shielding design and material characterization in radiology installations

Participants

```
Jorge Miguel Sampaio (CFA/FCUL);
Ma Conceição Abreu (LIP);
Patrick de Sousa (LIP);
Luís Peralta (LIP/FCUL);
Patrícia Enes de Lima (ESSUAIg);
Sónia Dias (Master student/FCUL)
```

Current shielding guidelines

Are based in international recommendations:

The NCRP Rep. 49 (1976) is still used in many countries since its adopted as legally binding methodology (DL180/2002);

Workloads and transmission curves are outdated!

Current shielding guidelines

The Decree-Law 180/2002 establishes the Portuguese framework for shielding design of radiological installations:

- HVLs are only provided down to 50 kV;
- Lower operating potentials are obtained by pure exponential extrapolation;
 - Thickness equivalence between materials is outdated;
 - Workloads need to be revised.

Current shielding guidelines

The NCRP Rep. 147 (2004) revises and updates the shielding design methodology of X-ray imaging installations, including:

- New transmission curves based on the Archer and Simpkin model and data;
- Revised workloads;
- Specificity of new equipments.

Mammography installations

Mammography is performed at low potentials: 25 – 35 kV.

The shielding requirements can be ambiguous

(NCRP Rep. 147, pag. 13):

"Permanent mammography installations may not require protection other than that provided by typical gypsum wallboard construction. [...] Although the walls of mammography facility may not require lead shielding, a qualified expert shall be consulted..."

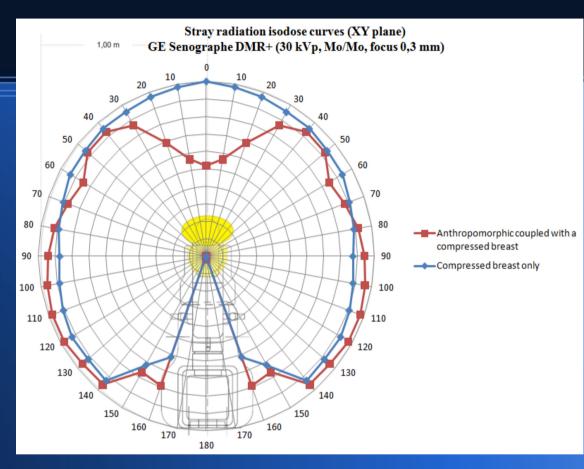
Mammography installations

In same cases, designers and regulators can be confronted with different shielding requirements that have significant cost differences.

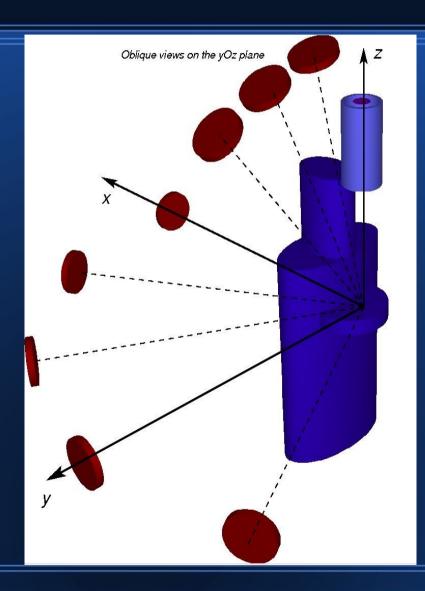
Goals of the project

- Map stray radiation dose rates in radiology installations (including a phantom of the patient);
- Evaluate absorption and scattering effects of the patient on unshielded dose rates;
- Support these measurements with generalized MC calculations;
- Revise shielding calculations with new design parameters;
- Assess properties of shielding materials produced by national industries.

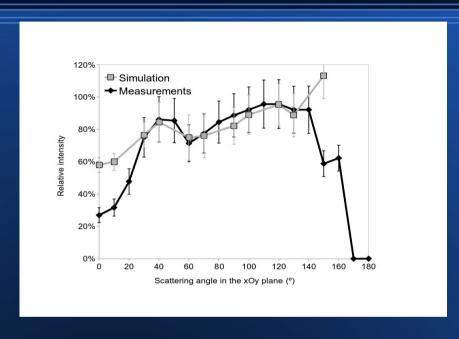
Mammography measurements

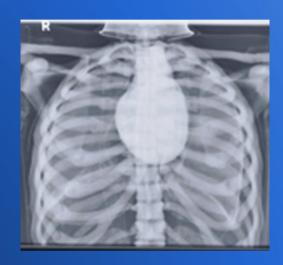


- Equipment: GE SENOGRAPHE DMR+;
- Phantom: Anthropomorphic coupled with a compressed breast (5 cm thickness);
- → Detection system: *Unifors Xi Survey detector* (solid state sensor) + *Base Unit*.


Results

Between 20° and 0°, absorption by the phantom coupled accounts for more than 50 % reduction relative to the compressed breast only configuration;


→ Between 80° and 140° there is an increase in dose rates due to scattering effects on the anthropomorphic phantom.


MC simulations

- → Code: PENELOPE (2011);
- X-ray source: IPEM database;
- Cut-offs: 1 keV;
- Primaries: 10⁹ photons;
- Speed: >1000 photons/second;
- Computing: LIP Farm.

MC simulations

Not included!

Agreement with measurements, except for 0°:

- Overestimation of stray radiation (no shielding of the tube included) and/or;
- Sub-estimation of absorption by internal organs.

Reception Waiting Waiting D coupled with the breast phanto Control station

Mobile installations

Non-profit organizations use mammography units mounted in caravans for free breast-screenings of the population. The shielding of these caravans implies significant extra costs

Mobile installations

NCRP Rep. 147 (2004) methodology;

Material: wood.

	Wall (A)	Wall (B)	Wall (C)	Wall (D)
x (mm) without "patient absorption"	0.0	25.4	4.1	52.5
x (mm) with "patient absorption"	0.0	25.4	0.0	26.6

Rad. Prot. Dosim, submitted (2012).

Material characterization

Collaboration with a small Portuguese company of building materials.

Wants to develop materials for radiological protection.

Need to know:

Mass-attenuation coefficients;

FICHA TÉCNICA

SEPOR® BARITA

Reboco de protecção radiológica. Substituto de placas de chumbo em áreas de radiação ionizante.

PRODUTO

Argamassa à base de sulfato de bário, inertes seleccionados, ligantes hidráulicos e aditivos.

APLICAÇÃO

Argamassa de revestimento interior de paredes para protecção radiológica em salas de radiologia, radioterapia, consultórios dentários, bem como todos os ambientes onde se exige o isolamento de radiações.

SUPORTES

Suportes convencionais de tijolo, bloco de betão ou betão. Os suportes devem ser salpicados com argamassa de chapisco (SEPOR M2) antes de aplicar SEPOR BARITA.

MODO DE EMPREGO

1- A superficie (paredes verticais ou tectos) onde vai ser aplicado o reboco baratido deve ser chapiscada para permitir criar pontos de aderência e após chapisco este deve secar pelo

2- A Argamassa SEPOR BARITA é uma argamassa pré-doseada, pronta a aplicar, bastando apenas adicionara quantidade de água indicada (cerca de 18%).

3- Consultar no projecto de radioproteção as espessuras correctas a aplicar em cada parede. É fundamental o cumprimento das espessuras correctas indicadas no projecto.

4- Para espessuras até 2,5 cm a aplicação é flata numa única camada. Para espessuras superiores a outra camada só é aplicada quando a anterior estiver suficientemente firme.

HVLs and lead equivalence.

Mixture with BaSO4

Material characterization

Cs-137 source (662 keV);


X-ray installation (20-100 kV)

Major issue:

Minimize scattering effects.

$(\mu/\rho)_{sepor}$ (cm ² /g)	$(\mu/\rho)_{NIST}$ (cm ² /g)	
(7.293±0.583)X10 ⁻²	7.747X10 ⁻²	

Future work

- Extend measurements and MC simulations to dental and veterinary radiological installations;
- Address the influence of field inhomogeneities;
- Improve MC simulations including a more realistic geometry;
- Optimize composition of building materials

Thank you!