NEXT International Collaboration

Coimbra-LIP research team

C.A.N.Conde
Teresa T. Dias
Filomena P. Santos
Filipa Borges
João Barata
Alexandre Trindade
Alexandre Garcia

Purpose

Search for neutrinoless double beta decay ($\beta\beta0\nu$):

- Tests Majorana nature of neutrino
- Helps determine absolute neutrino mass
- If observed, lepton number NOT conserved

How to look for neutrino-less decay

Measure the spectrum of the electrons

Where to look for neutrino-less decay

 In a number of even-even nuclei, β-decay is energetically forbidden, while double-beta decay is energetically allowed

$$(A,Z) \rightarrow (A,Z+2)$$

$$(A,Z) \rightarrow (A,Z+2) + e_1 + \underline{v}_1 + e_2 + \underline{v}_2 \quad \beta\beta2\gamma$$

$$(A,Z) \rightarrow (A,Z+2) + e_1 + e_2 \quad \beta\beta0\gamma$$

Candidates are

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁶Xe, ¹⁵⁰Nd

Experimental considerations

Extremely slow decay rates

- Large (> 100kg) and very efficient source mass
 - detector active medium as source?
- Best possible energy resolution
 - separate both peaks
- Extremely low backgrounds in the 0γββ peak region
 - must have:
 - Ultra clean radiopure materials
 - Hability to discriminate signal from background

Ideal detector

- Source serves as detector (enough active material)
- Elemental enriched source
- Large Q-value eliminates most potential backgrounds
- Slow $\beta\beta2\nu$ rate would help control irreducible background
- Eliminate background:
 - Direct identification of the decay to (except $\beta\beta2\nu$)
 - Event reconstruction/ spatial resolution and timing to eliminate background
- Some isotope might work better than others (are better understood)

Why use Xe for $\beta\beta0\nu$ search

- Only inert gas with a $\beta\beta0\nu$ candidate (isotope 136)
- Long $\beta\beta2\nu$ lifetime ~10²²-10²³ y (not seen yet)
- No need to grow crystals
- Can be re-purified in place (recirculation)
- No long lived Xe isotopes
- Noble gas:
 - easier to purify
 - no chemistry involved
- 136Xe enrichment easy (natural 8.9%)

LXe or HPXe?

With high-pressure xenon (HPXe)

A measurement of ionization <u>alone</u>

is sufficient to obtain

good energy resolution...

Xenon: Strong dependence of energy resolution on density!

A. Bolotnikov, B. Ramsey / Nucl. Instr. and Meth. in Phys. Res. A 396 (1997) 360-370

Fig. 5. Density dependencies of the intrinsic energy resolution (%FWHM) measured for 662 keV gamma-rays.

For $\rho > 0.55$ g/cm³, energy resolution deteriorates rapidly

Detector Concept

- Use enriched High Pressure Xenon
 Guarantees the large source mass
- TPC to provide image of the decay particles
- Design to <u>also</u> get an energy measurement as close to the intrinsic resolution as possible

In fact it all comes down to energy resolution and background rejection!!

"Intrinsic" Energy Resolution for Ionization at 136Xe Q-Value

$$Q$$
-value (136Xe \rightarrow 136Ba) = 2480 keV

W = energy per ion/electron pair in xenon gas = 21.9 eV,

N = number of ion pairs = Q/W

F = Fano factor. Measured in Xe gas: F = 0.13 - 0.17 (assume 0.15)

$$\frac{\Delta E}{Q} = 2.35 \cdot \frac{\sqrt{FN}}{Q} = \sqrt{\frac{FW}{Q}} \approx 2.8 \cdot 10^{-3} \text{ FWHM}$$

Comparison:

Germanium diodes @ 2.5 MeV $\Delta E/E \sim 1-2 \cdot 10^{-3}$ FWHM

Fano Factor of Liquid Xe ~20 \Rightarrow $\Delta E/E \sim 35 \times 10^{-3} \text{ FWHM}$

Electro-Luminescence (EL)

(Gas Proportional Scintillation)

- Electrons drift in low electric field region
- Electrons then enter a high electric field region
- Electrons gain energy, excite xenon, lose energy
- Xenon generates UV
- Electron starts over, gaining energy again
- Linear growth of signal with voltage
- Photon generation up to ~1000/e, but no ionization
- Early history irrelevant, ⇒ fluctuations are small
- Maybe... G ~ F?

(G is a measure of the <u>precision</u> with which a **single** electron from an ionizing track can be counted).

NEXT TPC scheme

Summed electron energy in units of the kinematic endpoint (Q)

However...

So, the use of pure gaseous xenon with EL technique guarantees a very good intrinsic energy resolution,

BUT electron drift velocity in Xe is low and diffusion coefficients are high, blurring the identification of the ionization track hindering the necessary background rejection.

The use of xenon doped with a molecular additive has been a suggested solution to increase electron drift velocity and decrease diffusion coefficients.

Coimbra-Lip Team GOALS

Find molecular additives to be mixed to xenon to

- increase electron drift velocity
- decrease electron diffusion coefficients

without compromising detector energy resolution

HOW

- Monte Carlo simulation
- experimental measurements

of GPSC elecroluminescence (EL) yield & energy resolution

ADDITIVE Candidates

 N_2 , CH_4 , CF_4 , TMA.

Monte Carlo simulation results: EL Yield

EL yield \mathcal{H} (UV photons per electron), produced under applied reduced electric fields E/N, when one electron drifts across a D=0.5 cm long EL region in Xe or in the Xe-CH₄ and Xe-CF₄ mixtures with the indicated η_{CH4} and η_{CF4} molecular concentrations [p=7600 Torr, T=293 K].

Monte Carlo simulation results: EL Fluctuations

Fluctuations parameter $Q=J/\mathcal{H}$ of the EL yield \mathcal{H} , where $J=\sigma_{\mathcal{H}}^2/\mathcal{H}$ is the relative variance of \mathcal{H} . The bar $F_{\rm Xe}$ marks the Xe Fano factor.

 $R_{int}^2 \propto (1/n) (F + Q)$

Fraction ζ of electrons that become attached to CH_4 or CF_4 molecules in the EL region.

Conclusions from EL simulation results:

- CH₄ may be a good candidate below ~ 1% concentrations
- CF_4 apparently is not, even at much lower concentrations (<0.01%).

However, \mathcal{R}_{int} ($\mathcal{R}_{int}^2 \propto (1/n)$) (F + Q) is also determined by other factors, namely n (recombination), the Fano factor, etc

And not all candidates have enough and credible data to implement a reliable simulation scheme so...

TPC: $\beta\beta$ Signal & Backgrounds

Fluctuations in Electroluminescence (EL)

EL is a linear gain process

G for EL contains three terms:

- 1. Fluctuations in n_{uv} (UV photons per e):
- 2. Fluctuations in npe (detected photons/e):
- 3. Fluctuations in photo-detector single PE response:

$$\sigma^2 = 1/(n_{uv}) + (1 + \sigma_{pmt}^2)/n_{pe}$$

For G = F =
$$0.15 \Rightarrow n_{pe} \ge 10$$

The more photo-electrons, the better!

Equivalent noise: much less than 1 electron rms!

Double Beta Decay Spectra

Figure 2.4: The two neutrino, zero neutrino, and Majoran double beta decay modes. The only method to distinguish the modes is via kinematic measurement.

How to look for neutrino-less decay

Measure the spectrum of the electrons

What's needed...

- Long lifetimes (>10²⁵ years) require:
 - Large Mass of relevant isotope (>100 kg)
 - Small or No background:
 - Clean materials
 - Underground, away from cosmic rays
 - Background rejection methods:
 - Energy resolution
 - Event topology
 - Particle identification
 - Identification of daughter nucleus
 - Years of data-taking

Double beta decay

The ideal result is a spectrum of all $\beta\beta$ events, with a 0- ν signal present as a narrow peak, well-separated from 2- ν

Renewed Impetus for $0v\beta\beta$

The discovery that neutrinos are not massless particles, provides compelling arguments for performing neutrinoless double-beta decay $(0v\beta\beta)$ experiments with increasing sensitivity.

$0v\beta\beta$ decay probes fundamental questions:

- Lepton number conservation might Leptogenesis be the explanation for the observed matter - antimatter asymmetry?
- Neutrino properties the only practical technique to determine if neutrinos are their own anti-particles — Majorana particles.

If $0\nu\beta\beta$ is observed:

- Provides a promising laboratory method for determining the absolute neutrino mass scale that is complementary to other measurement techniques.
- Measurements in a series of different isotopes potentially can reveal the underlying interaction process(es).

Double-Beta Decay

In a number of even-even nuclei, β -decay is energetically forbidden, while double-beta decay, from a nucleus of (A,Z) to (A,Z+2), is energetically allowed.

Double-Beta Decay

In a number of even-even nuclei, β -decay is energetically forbidden, while double-beta decay, from a nucleus of (A,Z) to (A,Z+2), is energetically allowed.

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr ¹⁰⁰Mo, ¹¹⁶Cd ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

Double-Beta Decay Modes

2v double-beta decay $(2v\beta\beta)$: Nucleus $(A, Z) \rightarrow$ Nucleus $(A, Z+2) + e^{-} + \overline{\nu}_{e} + e^{-} + \overline{\nu}_{e}$

Allowed second-order weak process Maria Goeppert-Mayer (1935)

 $2\nu\beta\beta$ observed for 48 Ca, 76 Ge, 82 Se, 96 Zr 100 Mo, 116 Cd 128 Te, 130 Te, 150 Nd

Ov double-beta decay $(0v\beta\beta)$: Nucleus $(A, Z) \rightarrow \text{Nucleus}(A, Z+2) + e^{-} + e^{-}$

Ettore Majorana (1937)
realized symmetry properties
of Dirac's theory allowed the
possibility for electrically
neutral spin-1/2 fermions to
be their own anti-particle

Two Types of Double Beta Decay

A known standard model process and an important calibration tool

$$T_{\frac{1}{2}} \approx 10^{19} \text{ yrs.}$$

Neutrinoless double beta decay.

If this process is observed:

Neutrino mass ≠ 0

Neutrino = Anti-neutrino!

Lepton number is not conserved!

$$\frac{1}{T_{\frac{1}{2}}} = G \times \|\mathbf{M}\|^2 \times m_{\overline{v}}^2$$
Neutrinoless double beta decay lifetime

Neutrino effective mass

IEEE NSS 2007 31

Early Estimates of ββ Decay Rates

2v double-beta decay $(2v\beta\beta)$

Maria Goeppert-Mayer (1935) using Fermi Theory

$$\left[T_{1/2}^{2\nu\beta\beta}\right]^{-1} \propto \text{Phase Space (4-body)} \propto Q^{10-12}$$

$$T_{1/2}^{2\nu\beta\beta} \approx 10^{25} \text{ years}$$

Ov double-beta decay $(0v\beta\beta)$

Furry (1939), assuming Parity conserved, so no preferential handedness

$$\left[T_{1/2}^{0\nu\beta\beta}\right]^{-1}$$
 \propto Phase Space (2-body) \propto Q^5
$$T_{1/2}^{0\nu\beta\beta} \approx 10^{19} \text{ years}$$

$0v\beta\beta$ mode highly favored over $2v\beta\beta$

If observe $2v\beta\beta \Rightarrow$ neutrinos are Dirac

If observe $0v\beta\beta \Rightarrow$

neutrinos are Majorana

Rare nuclear transition between same mass nuclei

Energetically allowed for even-even nuclei

- $(Z,A) \rightarrow (Z+2,A) + e_1^- + \underline{v}_1 + e_2^- + \underline{v}_2$
- $(Z,A) \rightarrow (Z+2,A) + e_1^- + e_2^-$
- $(Z,A) \rightarrow (Z+2,A) + e_1^- + e_2^- + \chi$

Figure 2.1: Simplified atomic mass scheme for nuclei with A=136. The parabolae connecting the odd-odd and even-even nuclei are shown. While ¹³⁶Xe is stable to ordinary beta decay, it can decay into ¹³⁶Ba by double-beta decay.

What is this factor "G"?

In in practice:

G is a measure of the <u>precision</u> with which a **single** electron (from an ionizing track) can be counted.