

AMBIENTE DE RADIAÇÃO NO ESPAÇO

Patrícia Gonçalves

Three sources of radiation

Solar Events (SEP)

protons and electrons
high flux
low energy
sporadic
very dangerous

Protons and ions low flux very energetic penetrating

Galactic Cosmic Rays

Planetary Radiation Belts protons and electrons high radiation dose

Supernova in Crab nebula seen in X-ray by the Chandra mission

Magnetospheric Storms

See movie in: http://www.youtube.com/watch?v=BDZj1CmsJ64&feature=related

Aurora

Charged particles captured in the radiation belts excite N2 and O2 molecules that emit visible light while returning to the fundamental state.

Today's Space Weather

http://www.swpc.noaa.gov/today.html

3-day Solar-Geophysical Forecast

issued Apr 20 22:00 UTC

Solar Activity Forecast:

Solar activity is expected to be low through the period (21 - 23 April) with a chance for an isolated M-class flare.

Geophysical Activity Forecast:

Geomagnetic field activity is expected to be at quiet levels during the first half of day 1 (21 April). Activity is forecast to increase to unsettled levels with a chance for active levels beginning around 21/1500Z and continuing into day 3 (23 April) due to expected glancing blows from the partial-halo CMEs observed on 18 and 19 April. There will also be a slight chance for minor storm levels on day 1.

What we do

Model the radiation environment in space and study and measure the effects of radiation in EEE components and for human space flight

An Example:

Radiation Environment Models

Model of the radiation environment on Mars,
Phobos and Deimos, including local treatment of
surface topography and composition,
atmospheric composition & density
(with diurnal + annual variations) and
local magnetic fields.

Detailed Martian Radiation Environment Model developed by LIP

Inputs

As a function of 5° x 5° in lat-long, season (12 SL intervals) & (day/night)

- Atmosphere composition: EMCD (European Mars Climate Database) or MarsGRAM (NASA)
- Topography from Mars Laser Altimeter aboard Mars Global Surveyor.
- Soil Composition from analysis of data collected with the Gamma Ray Spectrometer aboard Mars Odyssey, including water content and CO₂ ice.
- Magnetic Field Models, from PLANETOCOSMICS
- **GCR spectra (α solar cycle): ISO 15390 model (Nymmik)**
- SEP (worst 5 minutes / total fluence): from models & data.

...it is possible!

24/04/2012

The interplanetary travel

The most dangerous phase in a trip to Mars, from the point of view of the radiation hazard, is the interplanetary travel!

The biggest danger is the possibility of a SEP reaching the mission..

Mitigation Strategies are under development:

- Shelters inside water compartments or other
- Faster propulsion system
- SEP Forecasting tools and alarms

More in

http://www.lip.pt/~space

SPACE Radiation Environment & Effects

Study and simulation of the radiation environment in the heliosphere: radiation monitoring and effects on EEE components

Master Degree theses subjects 2011/2012

- Space Radiation Environment and Technology Demonstration In-flight Data analysis
- Radiation Environment and Habitability in the Jovian System: Exploring Europa, the Jovian <u>Moon</u>
- Radiation Environment and Effects in Human Space Flight: A Lunar Mission

LIP Space Catalogue 2011

Contact

Patrícia Gonçalves

LIP, Av. Elias Garcia, 14 1? 1000-149 Lisboa, Portugal tel: 21 799 5039 / 21 797 3880 fax: 21 793 4631

Team

Patrícia Gonçalves - Researcher (LIP/IST)

Ana Keating - Post-Doc (LIP)

Mário Pimenta - Researcher(LIP/IST)

Bernardo Tomé - Researcher(LIP)

Pedro Brogueira - Researcher (LIP/IST)

Catarina Espírito Santo - Researcher (LIP/IST)

Bruno Morgado - PhD Student (IST)

João Sabino - Master student (IST)