

Space Radiation and Effects @LIP

9 Years of Activity

A. Keating

Space Group

- Patrícia Gonçalves LIP/IST
- Ana Keating LIP
- Mário Pimenta LIP/IST
- Bernardo Tomé LIP/IST Pedro Brogueira LIP/IST
- Catarina Espírito Santo LIP/IST
- Bruno Morgado IST (PhD Student)
- João Sabino MIST (Master student)
- Micaela Cunha (Master)
- Miguel Ferreira LIP (Technical)

Our vision

- Generate in-house knowledge and know-how
- Become a recognized centre of excellence
- Create international networking
- Develop and Evolve
- Generate increased national capabilities
- Build-up the system to engage higher level science projects

Projects time evolution

- Mainly 1-2 years ESA projects
- Small projects or project extensions (ESA CCN)
- ESA Projects in International Consortium
- ESA Projects in National Consortium (w/ Industry)
- Academic Projects (no or low budget financial support, FCT)
- First negotiations are starting for future participation in scientific instruments timeline

Development projects: Develop in house knowhow and skills

Contracts with Industry

International

National

Academic projects

Build-up the system to engage higher level Space Science projects

- Radiation Environments
- Rad. Effects EEE
- Rad. Effects Human Sp. Flight
- Detectors Simulation
- In-fight Data Analysis
- Ground based Irradiation Testing

Models

Main Subjects

Planetary

Atmospheres
Geology
Magnetosphere
Planetary evolution

Semiconductor

EEE component
Degradation
mechanisms:
testing (ground/space)
modelling

Detectors

design and optimisation
Simulation
data analysis

SEP , GCR, Trapped particles Planet (atmosphere, surface, orbit), Spacecraft Spacecraft systems, EEE components, Humans

Heliosphere

Interaction Radiation with Matter

Main Tool

GEANT4

- Particle physics simulation, for particle transport and interaction with matter used for simulating:
 - Detector and component materials

- Planetary atmospheres and surfaces
- Dose & Human Phantoms

Main Characteristics & Lessons Learned

Area of Interfaces

Advantages

- Different Physics involved
- Development of different skills and competences
- Development of a large International network
- Increased complexity required
- Different applications
- Working with ESA: Fin. Autonomy

Disadvantages

- Extremely high organizational skills
- Number of people is never enough
- Work overload
- Increased complexity required
- Short term projects
 - Difficulty in assuring long term contract with PhD students

Activities

Radiation in sub-solar systems

Jovian System

- Active volcanism
- Active Moons

Production of Jovian Radiation (electrons, protons and ions)

Strong and Complex magnetosphere

Modulation of Cosmic, Jovian and Solar radiation

Planetary Radiation

- Magnetosphere
- Atmosphere
- Soil

- Topology
- Time Evolution

Radiation Cascade

Earth

Mars Radiation Environment

Radiation induced effects

	10 ²⁰ cm ³	
Source	Gate	 Drain
	SiO ₂	
	10 ¹⁵ cm ³	
— 0.1 μm		Silicon

Material	Mobliity [(m²/(V s)]	Effect
Metal	10 ⁵	Instant recombination
Oxide	Electrons 10 ⁻⁴ – 10 ⁻³ ; Holes 10 ⁻⁵ —10 ⁻¹²	Long-lived cumulative effects (TID)
Semiconductor	10 ⁻¹ – 1	Creation of electron-hole pairs -> Transient effects (SEE)

28/0 April 2011

CODES COmponent DEgradation Simulation tool

software framework providing tools for analyzing and predicting radiation effects.

Radiation Monitors

Design optimization

Bruno Morgado

Configuração geométrica e dos materiais para conjuntos de especificações.

validação

Especificações

Id. Partículas, intervalos de energia, número de canais, número de elementos de detector

Algoritmo

Física:

parametrização dos mecanismos de perda de energia e de interacção das partículas com a

matéria

Ajuste de geometria e materiais

Configuração ajustada

input

Simulação

Geant4:

ferramenta de simulação do transporte e interacção da radiação

com a matéria

Simulação completa da configuração escolhida

In-flight Data

ESA project 6403/10/NL/SFe

 CTTB is a Component Test Bed to fly components. It was developed by EFACEC for ESA. CTTB is expected to flight on ALPHASAT 2012

- Preparation of CTTB In-flight data analysis
 - Characterization temperature dependent TID effects of flight lot RADFETS
 - Ground based test data analysis in preparation for flight data analysis

TDM PROBA II in-flight data

Location of all TDM SEUs and SELs observed during the month of April 2010 [10.1109/TNS.2010.2095468]

-120

- TDM is a technology demonstration Module
- Fly SEE monitors
 - Use real environment conditions, input radiation
 - Use detailed simulation for data reconstruction
 - Use experimental test data

Ground based Device Testing

RADFET Testing

- Irradiation test plan
- Board design
- Test implementation and maintenance

Temperature [°C]

Ion Testing, C252 & Co-60

SEU Monitor Testing

- C252
- LNS Catania, Ion testing Ne and Xe
- UCL, Louvain, low penetration He, O

R&D ELDRS Effect

Projects Summary

ESA- LIP

Project	Subcontractors	Contract Number	Budget (K€)	Duration (month)	Starting Date
GEANT4					2003
MARSREC		18121/04/NL/CH	100	24	2004
CODES		18121/04/NL/CH	100	24	2006
CODES	Cyberoffice (Pt)	22381/09/NL/PA	150	24	2009
 			20	5	2012

LIP- Consortiums- ESA

Project	Partners	Contract Number	Budget	Duration	Starting
			(K€)	(month)	Date
MARSREM	QinetiQ *(UK)	19770/06/NL/JD	78	18	2006
	BIRA (Be)				
	Space It (CH)				
	DHConsultancy(Be)				
PIPS	EFACEC	19100/05/NL/HB	23	18	2005
	COSINE				
CTTB	EFACEC * (Pt)	18121/04/NL/CH	50	18	2011

FCT/Universities

Project/collaboration	Contract	Budget (K€)	Duration (month)	Starting Date
Heliospheric Network				
Leicester University	Agreement		24	2010

- Students
 - Started with 1 PhD project
 - In the last years : ~3 Student projects/year
- Publications
 - 9 International journals
 - 1 Book
 - Over 50 conferences/workshops/international meetings
 - Participation in International Standards Organization

```
2005-1 paper IF 1.11 ______ 2011/2012 : 1pp IF 3.82,
2 pp IF 2.31, 1pp IF2.04
```

Reviews in international journals: IEEE TNS, PSS