

Jets in Pb+Pb Collisions Measured by ATLAS

Helena Santos, on behalf of the ATLAS-LIP Group

- Motivation
- Jet reconstruction
- Physics analysis

Jets in Heavy Ion Collisions

Unknowns:

 How do parton showers in hot and dense medium differ from those in vacuum?

- How much is the jet yield suppressed?
- How does the suppression depend on jet radius?
- Is the fragmentation function modified?
- Is the hadron angular distribution broadened?

What is the physics responsible for this modification?

Collision's Centrality

- Transverse energy in FCal compared to Glauber MC model ⊗ p+p data
- Sampling fraction of Pb+Pb collisions: $f = 98 \pm 2\%$, after all trigger and selection cuts

Event Seen by the Calorimeter

Main challenge: get rid off the huge underlying event produced in Pb+Pb collisions

The "pedestal" must be subtracted.

Granularity of the ATLAS calorimeter: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ "towers" (piled calorimeter cells)

Jets Reconstruction

Jets are reconstructed using anti- k_T algorithm with two choices of R

parameter (R=0.4 and R=0.2)

Average background estimated event-by-event per calorimeter sampling layer and per 0.1 n strip

$$E_{T,subt}^{cell} = E_{T}^{cell} - \rho xA^{cell}$$

To avoid biasing ρ due to jets:

Exclude cells satisfying $D = E_{T max}^{tower} / \langle E_{T}^{tower} \rangle > 5$

$$D = E_{T,max}^{tower} / \langle E_T^{tower} \rangle > 5$$

Jet Energy Resolution

E_⊤ [GeV]

Di-jet Asymmetry

Enhancement of asymmetric di-jets, relatively to p+p and PYTHIA+HIJING

→ first indication of jet suppression

$$A_{J} = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}} \qquad E_{T1} > 100 GeV$$

$$E_{T2} > 25 GeV$$

$$|\eta| < 2.8$$

FCal ΣE_{T} [TeV]

0.2

0.6

0.2

R = 0.2

Di-jet Azimuthal Correlation

 $\Delta \phi = \pi$ acoplanarity remains, while A_l is changing

Consistent with combinatoric contribution to R=0.4 di-jet $\Delta \phi$ distribution

 2nd jet "missing" and uncorrelated jet used

- But, combinatoric contribution much smaller for R=0.2
 - Yet, equally strong asymmetry modification

3

2.5

3

Conclusions

- 1 Jet reconstruction has reached very good performance;Still room for improvements...
- 2 Di-jet balance in peripheral collisions well compatible with p+p collisions and non-quenching based MC;

Di-jet asymmetry increases with increasing centrality.

3 - No broadening of $\Delta \varphi$.

Ongoing:

- Analysis of 2011 data
- Trigger studies on Heavy Flavour jets

Acknowledgements

To the ATLAS-LIP Group: Thank You All!!

And to:

