IceCube and CTA Multi-messenger high energy astrophysics teresa.montaruli@unige.ch UNIVERSITÉ **DE GENÈVE** Département de physique nucléaire et corpusculaire Section de Physique cherenkov telescope array ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE ICECUBE an observatory for ground-based gamma-ray astronomy UNIVERSITÉ Collaboration **DE GENÈVE** with Département de physique nucléaire et corpusculaire Section de Physique 2SDC **University of** Zurich^{⊍z⊮} Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich ÉCOLE POLYTECHNIQUE

CHIPP plenary meeting, Kartause Ittingen, Sep. 14, 2012

FÉDÉRALE DE LAUSANNE

What is astro/physics addressed by IceCube/CTA?

Astrophysics	Particle Physics	Cosmology	Applied Science
Sources of CRs, gammas and neutrinos (SNR, molecular clouds, starbursts, mqso, unid, black hole jets, GRBs, galactic plane)	Neutrino mass matrix (oscillations)	Dark Matter	South Pole climate
Cosmic ray anisotropies (local sources, galactic magnetic fields)	Neutrino x-section at UHE	Cosmogenic neutrinos, evolution of galaxies, primordial sources	Glaciology
Cosmic Ray composition at transition between galactic/ extragalactic	Violation of Lorentz Invariance		Earth density profile tomography
SN explosion Monitoring (also hierarchy and theta_I3) Solar flare Monitoring Stellar interferometry	Sterile neutrinos & mass hierarchy with low energy extensions		reversible cameras to generate energy during the day with a Stirling engine or multi-junction cells so to have a C02- neutral telescope array.
ecube in Nature 484, April 2012 (challenge GRBs as UHE cosmic ray sources) 7 published in 2012 (+ 8 in preparation); 15 published papers in 2011; 13 published in 2010			

10 in 2009

About 74 in total (including AMANDA)

Events in a km3-detector: PeV energies

To be able to see UHE events and reasonable statistics for low-luminosity beams

Run119316-Event36556705 Jan 3rd 2012 NPE 9.628x10⁴ Number of Optical Sensors 312

Run118545-Event63733662 August 9th 2012 NPE 6.9928x10⁴ Number of Optical Sensors 354

2 events / 672.7 days - background (atm. m + conventional atm. n) expectation 0.14 events preliminary p-value: 0.0094 (2.36 σ)

3YR SKYMAP

7

CTA small telescopes (SSTs)

out-trigger system of abt 70 telescopes to achieve the required sensitivity (0.01-1 Crab in 50 hrs @ 5 σ) between 3-100 TeV: cost constrain about 450k/SST

FACT with G-APD camera (ETHZ, EPFL, UniGE)

f/D = 1.4 and FoV = 9-10° Project lead by UniGe. UniGE, UniZH, ETHZ, EPFL involved in camera construction

Discovery sectors: < 50 GeV (Large-Size Telescopes for GRBs, pulsars, DM); > 5 TeV (Small-Size Telescopes). SSTs:

- hadronic acceleration connects to neutrinos (multimessenger), BH jets and shock diffusion
- unid PeVatrons sources of CRs in the knee and above
- EBL (informs us on cosmological distribution of sources), intergalactic magnetic fields,
- new physics (VLI).

The Geiger-APD detectors

5.0

Custom design from Hamamatsu to avoid square to hexagon adaptation of the light concentrators

G-APDs features:

- Good PDE > 25% integrated between 300<λ/nm<650 (50 μm);
- Excellent s.p.e. discrimination;
- Large Dark Count rate (but << NSB);
- Crosstalk (about 12% at nominal voltage, can be reduced with trenchers);
- Single devices match the required SST pixel size (0.25o, d=2.5 cm) with light concentrators (open funnel hex-to-hex possible);
- Low operating voltage, robust (survive direct exposure to sunlight, aging);
- Lightweight camera: simplified support structure.
- Industrial production of detector plane + camera

Evolution of Camera design

1296 pixels/ 108 modules of 12 pixels
10.4mm => 23.1mm s side-to-side hex-to-hex

88cm inner circle diameter

FACT: 1440 channels
40 cm diameter, 4.5 deg FoV
2.8mm → 1 cm square-hex funnel

Other SST design telescopes: Swartzchild-Couder

3 m

¢.3

GATE - MAPMT camera

5 telescopes funded with 8M by Italy.
Challenge: cost, mirrors and structure but
potentially can achiev better ang. res.
Healthy competition, but time scale for decision of
the project is 2 years. Array in 2015 as seed of CTA.

Conclusions

- Multi-messengers astrophysics with gammas and neutrinos represented in Switzerland by participants to IceCube, CTA, MAGIC and FACT
- CTA: construction of an SST -DC prototype in 2-3 years with Germany, Poland, Austria, Argentina. Switzerland is involved in innovative camera based on G-APDs. New partners are welcome.
- IceCube is proposing extensions to low energies valuable for DM, SN collapse, neutrino fundamental properties, sterile neutrinos