

framework for fast simulation of a generic collider experiment

Jérôme de Favereau, Pavel Demin

Université catholique de Louvain Louvain-la-Neuve, Belgium

Center for Particle Physics and Phenomenology (CP3)

• Website:

https://server06.fynu.ucl.ac.be/projects/delphes

• Paper and User manual:

arXiv:0903.2225 [hep-ph]

- Code adjustable by users familiar with C++ / ROOT
- Easy interface with existing libraries (file IO, jet finding)
- Interoperability with the ROOT analysis framework

- few ms / event on a standard laptop
- Ttbar events :

- File IO:
 - HepMC: http://lcgapp.cern.ch/project/simu/HepMC
 - ROOT: http://root.cern.ch
 - ExRootAnalysis: https://server06.fynu.ucl.ac.be/projects/ExRootAnalysis
 - LHEF Reader: http://home.thep.lu.se/~leif/LHEF
 - StdHep: http://cepa.fnal.gov/psm/stdhep
 - MCFIO: http://cepa.fnal.gov/psm/simulation/mcfio
- Jet finding:
 - FastJet: http://fastjet.fr
- Particle transport through beam lines:
 - Hector: http://www.fynu.ucl.ac.be/themes/he/ggamma/hector
- Event Display:
 - FROG: http://frog.hepforge.org

- Fast simulation of the following sub-detectors:
 - Propagation of particles in a magnetic field
 - calorimeters with electromagnetic and hadronic sections
 - muon detectors
 - (very-)forward detectors
- Reconstruction of physics objects:
 - Isolated electrons and muons
 - photons
 - jets
 - b-jets
 - tau-jets
 - missing transverse energy

Input and output files

- Detector extension in pseudorapidity:
 - tracker
 - central calorimeter
 - forward calorimeter
 - muon detectors
- Calorimeter segmentation
 - calorimeters are symmetric in η
 - all cells have identical size in φ for given η
 - identical segmentation for EM and HAD

Remark:

Unless otherwise stated, all given values can be set in the config cards

- Particles with $P_{_T} > 0.9$ GeV/c are propagated within a magnetic field until they reach the calorimeter
- Track reconstruction efficiency is 90% by default
- Particle energies (except muons) are smeared according to the resolution of the calorimeter they reach

$$\sigma^{2}(\eta) = N^{2}(\eta) + S^{2}(\eta) \cdot E + C^{2}(\eta) \cdot E^{2}$$

Detector (CMS default)	S	Ν	С
ECAL	0.05	0.25	0.0055
ECAL endcaps	0.05	0.25	0.0055
FCAL (e-m)	2.08	0	0.1070
HCAL	1.50	0	0.0500
HCAL endcaps	1.50	0	0.0500
FCAL (had)	2.70	0	0.1300

• For muons, transverse momenta are smeared (C=0.01): $\sigma^2 = C^2 \cdot p_T^2$

 Fraction of energy deposited in EM and HAD calorimeters is taken into account:

$$\textit{E}_{\textit{smeared}} = \textit{gaus}(\textit{E} \cdot \textit{f}_{\textit{EM}}, \sigma_{\textit{EM}}(\eta)) + \textit{gaus}(\textit{E} \cdot \textit{f}_{\textit{HAD}}, \sigma_{\textit{HAD}}(\eta))$$

• All energies deposited in a given η - ϕ cell are summed to form a tower:

$$E_{tower} = gaus(\sum (E_i \cdot f_{EM i}), \sigma_{EM}(\eta)) + gaus(\sum (E_i \cdot f_{HAD i}), \sigma_{HAD}(\eta))$$

particles	f _{em}	f _{HAD}
e γ π ⁰	1	0
Long-lived neutral hadrons ($K^0_{\ S}$, Λ^0)	0.3	0.7
νμ	0	0
others	0	1

- Photons / Electrons / Muons:
 - Identification: MC particle PID
 - 10 GeV P_{T} cut
 - Photon position from calorimeter cell
 - Muons do not leave energy in calorimeters
- Not simulated: fakes, punch-through, Bremsstrahlung, conversions
- Electrons and muons isolation:
 - No Tracks with $P_{\tau} > 2$ Gev/c in a 0.5 Cone

- Based on calorimeter towers
- Using FastJet Library with:
 - CDF Jets, CDF Midpoint
 - SISCone
 - Kt, anti-Kt
 - Etc...
- Energy flow (optional): jets are reconstructed using:
 - Charged particles momenta without smearing (in tracker)
 - Smeared tower energy for neutrals (in tracker)
 - Smeared tower energy for all (outside tracker)
- Electromagnetic and hadronic fractions, as well as number of tracks, are stored in the jet collection

B-tagging:

- Based on most energetic parton in jet:
 - Functions of η & $P_{_{T}}$ can be defined in config file
 - Flat default: b quark \rightarrow 40 % tag, c quark \rightarrow 10% mistag, light \rightarrow 1% mistag

Tau-jets:

- Only one track with $\rm P_{_T}>2~GeV$ /c in 0.4 cone

(rejection of "3-prong")

- 95% of the energy in a 0.15 cone
- Jet $P_{_{T}} > 10 \text{ GeV}$

Reconstruction: Missing E₊

Ideal Missing ET reconstruction based on calo towers and muons:

Effects not simulated:

- Dead channels
- Noisy towers
- Cracks
- Etc...

- CMS: Castor, ZDC, TOTEM detectors, HPS
- Atlas: Alfa, Lucid, ZDC, AFP
- In Delphes: only ZDC + 2 sets of near-beam detectors
- Beamline propagation using Hector
- Acceptances in config cards.

Trigger:

- Cut-based preselection on off-line objects
- Full trigger table through config card
- Logical combinations (AND)

Event display:

- FROG interface for 2D & 3D visualisation
- Geometry defined in config card

CMS resolution from: The CMS Collaboration, CERN/LHCC 2006-001. ATLAS resolution from: The ATLAS Collaboration, CERN-OPEN 2008-020.

→ Reasonable agreement

CMS resolution from: The CMS Collaboration, CERN/LHCC 2006-001. ATLAS resolution from: The ATLAS Collaboration, CERN-OPEN 2008-020.

→ Reasonable agreement

- Community-based development
 - Improvements and bugfixes requested through the ticketing system
 - Users (you) propose patches
 - CP3/UCL (us) test and commit, release new version often
 - Users get a mention on the frontpage
- Status
 - > 10 patches in the last 5 months, most by external users
 - Current developments in b-tagging ongoing @ CP3 (A.Mertens)
 - Code optimisation ongoing @ CP3 (P.Demin)
- Conclusions
 - This model works well
 - Delphes development is alive thanks to you

Backup slides

- Pile-up effects
- Calorimeter noise
- Multiple scattering \rightarrow smearing of tracks
- Improved lepton isolation criteria
- B-tagging improvements: do not use most energetic parton
- Allow for JES tuning
- Use non-gaussian HCAL smearing
- Implementation of efficiency functions
- Vertex position smearing
- Generic objects improvements
- Generic detector parts improvements

- Delphes reads the following file formats
 - StdHEP (XDR)
 - ROOT files obtained with h2root (hbook)
 - Les Houches Event Format
 - НерМС
- Delphes is driven by two input cards defining
 - detector card
 - trigger card
- Default detector cards and trigger tables for ATLAS & CMS based on published material

- Delphes outputs results in two file formats:
 - ROOT file containing three trees
 - GEN tree (generated particles)
 - Analysis tree (reconstructed objects)
 - Trigger tree (trigger acceptance)
 - LHCO file containing information about reconstructed objects