MADANALYSIS 5 A new framework for collider phenomenology

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg)

In collaboration with E. Conte & G. Serret.

Fast simulators for the LHC @ CERN June 11-12, 2012

Outline

Introduction.

Overview of MADANALYSIS 5.

3 Examples for normal and expert users.

4 Towards a fast detector simulation.

Introduction		
•00		

Comprehensive particle physics phenomenology.

- Implementation of new physics models in tools such as FEYNRULES. [Christensen, Duhr (CPC '09); Christensen, Degrande, Duhr, BenjF (in prep)]
 - ▶ or in any Monte Carlo model generator program.
- Event generation with MADGRAPH 5. [Alwall, Herquet, Mattelaer, Stelzer (JHEP '11)]
 or with any Monte Carlo event generator.

Parton-level phenomenology.

Parton showering and hadronization with tools such as PYTHIA or HERWIG.
 [Sjostrand, Mrenna, Skands (JHEP '06; CPC '08); Corcella *et al.* (JHEP '01); Bahr *et al.* (EPJC '08)]
 or with any parton showering tool.

Hadron-level phenomenology.

Fast detector simulation with tools such as $\frac{\text{DELPHES}}{\text{DELPHES}}$ or $\frac{\text{PGS}}{\text{PGS}}$.

[Ovyn, Rouby, Lemaitre ('09); Conway ('06)]

▶ or with any fast detector simulation program.

Reconstructed-level phenomenology.

Need for a new framework for collider phenomenology.

- Several levels of sophistication for phenomenological analyses.
 - * Parton level.
 - * Hadron level.
 - * Reconstructed level.
- Analysis skeleton.
 - * Reading of signal and background event files.
 - * Application of selection cuts.
 - * Creation of histograms and cut-flow charts.
 - * Extraction of information on the signal [usually swamped by backgrounds].
- Drawbacks.
 - * The procedure above is in general based on home-made tools.
 - ► Lack of traceability.
 - ► Validation of the tools?
 - ► Reproducibility of the results?
 - * These tools can in general only be used at a specific sophistication level.

► Lack of flexibility.

- * These tools can in general only be used with specific event file format.
 - ► Lack of flexibility.

Introducing MADANALYSIS 5.

Alleviation of these issues.

• A new unique framework for phenomenological analyses.

- * Any sophistication level (parton, hadron, reconstructed).
- * Any event file format (STDHEP, HEPMC, LHE, ...).
- * User-friendly \Rightarrow professional analyses in a simple way.
- * Fast: less than a minute for analyzing 100.000 events.
- * Flexible \Rightarrow no limit on the analysis complexity.
- * Easy to maintain.
- * Easy to validate.

This framework is called MADANALYSIS 5.

[Conte, BenjF, Serret (arXiv:1206.1599 [hep-ph])]

Overview 0000		

Outline.

Introduction.

3 Examples for normal and expert users.

4 Towards a fast detector simulation.

5 Conclusions.

Overview		
•000		

From MADANALYSIS 4 to MADANALYSIS 5.

- Object-oriented programming language.
 - * MADANALYSIS 4: FORTRAN.
 - * MADANALYSIS 5: C++ core; Python interface; uses Root.
- Flexibility.
 - * MADANALYSIS 4: No.
 - * MADANALYSIS 5: Yes.
- User-friendly.
 - * MADANALYSIS 4: A complicated plot card.
 - * MADANALYSIS 5: Intuitive Python commands.
- Limitations.
 - * MADANALYSIS 4: What is implemented.
 - * MADANALYSIS 5: The user's imagination.
- MADANALYSIS 5 is going beyond the MAD-series of programs.
 - * Can be used as a standalone package.

Overview		
0000		

• Two modules.

- * A PYTHON command line interface: interactive commands.
- * A C++/ROOT module, SAMPLEANALYZER: performs the analysis.

Overview		
0000		

• Normal mode of running (user-friendly).

- * Commands typed in the PYTHON interface.
- * Analysis performed behind the scene (black box).
- * Human readable output: HTML, LATEX.

Overview		
0000		

• Expert mode (developer-friendly).

- * C++ programming within the SAMPLEANALYZER framework.
- * C++ and ROOT skills required.
- * The Python interface creates a blank analysis as a starting point.

Overview		
0000		

• Inputs.

- * Monte Carlo samples \Leftrightarrow datasets.
- * Particle and multiparticle labels.
- * User commands.

Overview		
0000		

• Jobs and results.

- * Translation of the commands by the interface \Rightarrow C++ job.
- * Uses the SAMPLEANALYZER kernel.
- * Generation of the results.

Overview oo●o		

Basic concepts.

- Command line interface.
- * In-line help.
- * Auto-completion.
- Particles and multiparticles.
- * Particle are defined by labels.
- * A label points to one or several PDG-id(s).
- * MSSM + SM labels: automatic.
- Can be loaded from UFO files [Degrande, Duhr, BenjF, Grellscheid, Mattelaer, Reiter (CPC '12)].
- * Labels can be created and deleted.
 ▶ define and remove.

• Datasets.

- * A dataset is a label.
- * Collects similar event samples.
- * Treated in the same way by MADANALYSIS 5.
- * Formats: LHE, LHCO, STDHEP, HEPMC.

define tau = tau+ taudefine mytau+ = -15remove mytau+

import	tt1.hep	as	ttbar
import	tt2.hep	as	ttbar
import	Wj1.hep	as	Wjets
import	Wj2.hep	as	Wjets

Overview ooo●		

Plots and cuts.

- The command plot.
- * Creation of an histogram.
- * Global observables \Leftrightarrow the entire event.
- * Properties of the particles in the event.
- * Ordering of the particles.
- * **Combining** particles ►Sum and differences
 - ► Vectorial or scalar.
- * Linear or logarithmic scales.
- Cuts.
- * Selecting/rejecting events.
- * Selecting/rejecting particles.
 ▶ not rejecting the event.
- Executing the analysis: submit.
- Reports.
- * HTML reports.
- * **LATEX** reports.

plot MET
plot N(mu)
plot PT(mu[1])
plot ETA(mu) [logY]
plot M(mu[1] mu[2])
plot dM(mu+ mu-)

reject MHT < 50 select (mu) PT > 50

generate_html <dir>
generate_latex <dir>
generate_pdflatex <dir>

	Examples 00000000	

Outline.

1 Introduction.

Overview of MADANALYSIS 5.

Examples for normal and expert users.

4 Towards a fast detector simulation.

000	0000	0000000	0000	0
		Examples		

Particle properties.

• Kinematical distributions related to particle species.

- * Intuitive commands.
- * Available observables:

BETA, DELTAR, E, ET, ETA, GAMMA, M, MT, P, PHI, PT, PX, PY, PZ, R, THETA, Y.

* Scalar and vectorial sums/differences are implemented.

	Examples o●oooooo	

Global event observables.

- Global event kinematical observables.
 - * Missing and visible energy of the event MET, ET.
 - * Missing and visible hadronic energy of the event MHT, HT
 - * Partonic center-of-mass energy SQRTS.

	Examples oo●ooooo	

Multiplicities.

• Particle content.

- * Particle content of the event NPID, NAPID.
- * Particle multiplicity N
- ► $t\bar{t}$ + 0, 1, 2 jets (hadronic mode).
- $\blacktriangleright WW$ +0, 1, 2 jets (semileptonic mode).
- ►LHC @ 8 TeV; 10 fb⁻¹.
- ► Hadron-level.
- ► Jet multiplicity.

```
import ttbar_hh.lhe.gz as ttbar
import ww_l.lhe.gz as ww
define j = j b b~
plot N(j)
submit tempdir
generate_latex temp_tex
```


	Examples 0000000	

Leading lepton properties.

- Particle ordering.
 - * Can be access with the squared brackets [<i>] .
 - * Several possible ordering variables. E, ET, ETA, P, PT, PX, PY, PZ.
- $\triangleright Z + 0, 1, 2, 3, 4$ jets (dileptonic mode).
- $\blacktriangleright WW + 0, 1, 2$ jets (dileptonic mode).
- ► $t\overline{t}$ + 0, 1, 2 jets (dileptonic mode).
- ►LHC @ 8 TeV; 10 fb⁻¹.
- ► Hadron-level.
- ► Energy ordering.
- ► Leading lepton p_T .
- ► The binning is specified.

```
import z.lhe.gz as zjets
import ttbar.lhe.gz as ttjets
import ww.lhe.gz as wwjets
define l = l+ l-
plot PT(l[1]) 20 0 200 [logY]
set selection[1].rank = Eordering
submit tempdir
generate_latex temp_tex
```


Cuts and signal over background ratios (1).

• Cuts.

- * Through the commands select and reject followed by a condition.
- * Samples can be tagged as signal or background.
- * Formula for the signal over background ratio can be provided.
- **Background**: WW + 0, 1, 2 jets (dileptonic and semileptonic modes).
- ▶ Signal: $t\bar{t} + 0, 1, 2$ jets (dileptonic mode).
- ▶ Lepton candidates: $p_T > 50$ GeV; ▶ Reject events if $E_T(j) < 50$ GeV.
- ► Signal over background ratio: S/B.

```
import ww_ll.lhe.gz as wwl
import ww_hl.lhe.gz as wwh
import ttbar_ll.lhe.gz as ttbar
set wwl.type = background
set wwh.type = background
set main.SBratio = 'S/B'
define 1 = 1 + 1 - 1
select (1) PT > 50
reject ET(j) < 50
plot M(1[1] j[1])
submit tempdir
generate_latex temp_tex
```


Cuts and signal over background ratios (2).

• MADANALYSIS 5 output for signal over background comparison.

- * Formula for S-B comparison: S/B.
- * Formula for uncertainty on S-B comparison: 1./(B**2)*sqrt(B**2*ES**2+S**2*EB**2).
- Reminding the cuts.

select (1) PT > 50 reject ET(j) < 50

• Results.

Cuts	S	В	S vs B
Initial (no cut)	133780	243725	0.549
cut 1	133780	243725	0.549
cut 2	19134 +/- 128	20738 +/- 127	0.9226 +/- 0.0084

	Examples 000000●0	

Expert users: W-boson polarization (1).

- Property to be investigated.
 - * Polarization of the W issued from a top leptonic decay.
 - * Process: $t\bar{t}$ in the semileptonic decay channel.
 - * Property investigated to an angular distribution $d\sigma/d\cos\theta^*$.
- The angle θ^* is the angle between:
 - * The momentum of the W evaluated in the top rest frame.
 - * The momentum of the lepton evaluated in the W rest frame.
- Developer-friendly implementation:
 - * Only the relevant part of the analysis is presented here.
 - \blacktriangleright Event processing, particle identification, histogram creation \Rightarrow manual.
 - * Employing the built-in ToRestFrame and angle methods.
 - * The momentum of the lepton is evaluated in the W rest frame. PHYSICS->ToRestFrame(lepton,w);
 - The momentum of the W is evaluated in the top rest frame.
 PHYSICS->ToRestFrame(w,top);
 - * Filling the histogram: histo->Fill(cos(lepton.angle(w)));

	Examples 0000000●	

Expert users: W-boson polarization (2).

- Property to be investigated.
 - * Polarization of the W issued from a top leptonic decay.
 - * Process: $t\bar{t}$ in the semileptonic decay channel.
 - * Property investigated to an angular distribution $d\sigma/d\cos\theta^*$.
- The angle θ^* is the angle between:
 - * The momentum of the W evaluated in the top rest frame.
 - * The momentum of the lepton evaluated in the W rest frame.

• Parton-level results.

	Towards a fastsim	

Outline.

1 Introduction.

- 2 Overview of MADANALYSIS 5.
- 3 Examples for normal and expert users.
- 4 Towards a fast detector simulation.

5 Conclusions

Why a fast detector simulation in MADANALYSIS 5? (1)

- Status of the existing tools?
 - * There are several existing codes which do a pretty good job.
 - * Each has limitations (jet energy scale, complicated efficiencies, ...)
- For our studies, we need to overcome these limitations.
 - ▶ Fakes, triggers, τ -reconstruction, ...
- Three options are offered to us.
 - Hack those codes.
 - **2** Implement a fastsim in MADANALYSIS 5 with the required features.
 - **3** The maximal mixing scenario.
 - ► Take the best from these codes.
 - ▶ Import them in MADANALYSIS 5 as shared libraries.
 - ▶ Implementation of the missing features in MADANALYSIS 5.
- Option #1 is not really an option.
 - * Need to dig into other's code.
 - * Issues with validation.
 - * We might also ask to the codes' authors.
 - ► Do they want to do it?
 - ▶ What is the timescale then?

	Towards a fastsim 0●00	

Why a fast detector simulation in MADANALYSIS 5? (2)

• Option #2

- * That means reinventing the wheel for many features.
 - ► A however low necessary time budget.
 - ▶ It might be better to use this time for developing novelties.
- Option #3.
 - * No need to dig into other's code.
 - * We can focus on developing novel features.
 - * Users can benefit from the user-friendliness, flexibility and interactivity of $\rm MadAnalysis~5.$
 - * Existing codes should provide dynamical libraries.
 - We need to work all together (otherwise \Rightarrow option #2).

	Towards a fastsim	
	0000	

Functionalities of a fast detector program.

• Extension the functionalities of the existing codes.

- Smearing.
- Rescaling (jet and lepton energy scales).
- Reco-gen matching.
- Charge (mis)identification for e, μ and τ .
- Particle tagging.
- τ reconstruction.
- Not present. Physics studies required.
 - Fakes.
 - Calorimeter noise (e.g., random hot cells, ...).
 - Pile-up.
 - Displaced vertices.
 - Trigger resolutions and structure.
 - Cosmic rays.

	Towards a fastsim ○○○●	

Timeline.

• Fall '12 release.

- * Interface with MADGRAPH 5.
 - ► Automatic installation.
 - ► Automatic plots after event generation.
- * Weighted events (negative weights, AMC@NLO).
- * Matching plots.
- * Interface with FASTJET.
 - ► New HEP2LHE-like package.
- * Tutorials.
 - ► FEYNRULES-MADGRAPH 5 school in Natal.
- Christmas '12: towards a fast detector simulation.
 We want to be ready for the LHC shutdown.

		Summary O

Outline.

1 Introduction.

- 2 Overview of MADANALYSIS 5.
- 3 Examples for normal and expert users.
- 4 Towards a fast detector simulation.

		Summary •

Summary.

- MADANALYSIS **5** is a new framework for collider phenomenology.
 - * Unique \Rightarrow partonic, hadronic or reconstructed events.
 - * User-friendly \Rightarrow PYTHON command line interface.
 - * Flexible \Rightarrow a C++ kernel.
- A special mode for expert users exists.
 - * Developer-friendly \Rightarrow C++ and ROOT skills required.
 - * No limitations \Rightarrow e.g., the W polarization.
- Major development plans.
 - * Interface with MADGRAPH 5.
 - * Weighted events.
 - * Matching plots.
 - * Interface with FastJet.
 - * Fast detector simulation.

Try the code (and love it).

http://madanalysis.irmp.ucl.ac.be ma5team@iphc.cnrs.fr