

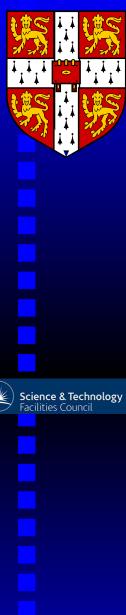
Users' Feedback

by

Ben Allanach (University of Cambridge) Talk outline

- A_{FB} : MadGraph
- Feedback
- A couple of recommendations

AILAS U-lepton, jets and p_T search


ATLAS use cuts on different variables to search for SUSY:

• jet p_T s

Science & Technology Facilities Council

• $m_{eff} = \sum p_T^{(j)} + |p_T|$ • $m_T^{(i)^2}(\mathbf{p}_T^{(i)}, \mathbf{q}_T^{(i)}) \equiv$ $2 \left| \mathbf{p}_T^{(i)} \right| \left| \mathbf{q}_T^{(i)} \right| - 2 \mathbf{p}_T^{(i)} \cdot \mathbf{q}_T^{(i)}$ where $\mathbf{q}_T^{(i)}$ is the transverse momentum of particle (i). For each event, it is a lower bound on m(NLSP). $M_{T2}(\mathbf{p}_T^{(1)}, \mathbf{p}_T^{(2)}, \mathbf{p}_T) \equiv \min_{\sum \mathbf{q}_T = \mathbf{p}_T} \left\{ \max\left(m_T^{(1)}, m_T^{(2)} \right) \right\}$

ATLAS 1 fb⁻¹ 0-lepton Search Results

	≥ 2 jets	\geq 3 jets	≥ 4 jets	≥ 4 jets'	High mass
$p_T(j_1)$	> 130 GeV	> 130 GeV	> 130 GeV	> 130 GeV	> 130 GeV
$P_T(J_2)$	> 40 GeV	> 40 GeV	> 40 GeV	> 40 GeV	> 80 GeV
$p_T(j_3)$		> 40 GeV	> 40 GeV	> 40 GeV	> 80 GeV
$p_{\Gamma}(j_4)$			> 40 GeV	> 40 GeV	> 80 GeV
[PT]	> 130 GeV	> 130 GeV	> 130 GeV	> 130 GeV	> 130 GeV
$\Delta \phi$	> 0.4	> 0.4	> 0.4	> 0.4	> 0.4
$p_{\rm T}^{\rm mins}/m_{\rm eff}$	> 0.3	> 0.25	> 0.25	> 0.25	> 0.2
men	> 1000 GeV	$> 1000 { m ~GeV}$	> 500 GeV	> 1000 GeV	$> 1100 { m ~GeV}$
Observed	58	59	1118	40	18
Background	$62.4 {\pm} 4.4 {\pm} 9.3$	$54.9 \pm 3.9 \pm 7.1$	$1015 \pm 41 \pm 144$	$33.9{\pm}2.9{\pm}6.2$	$13.1 \pm 1.9 \pm 2.5$
$q \times A \times \epsilon/\text{fb}$	22	-25	429	27	17

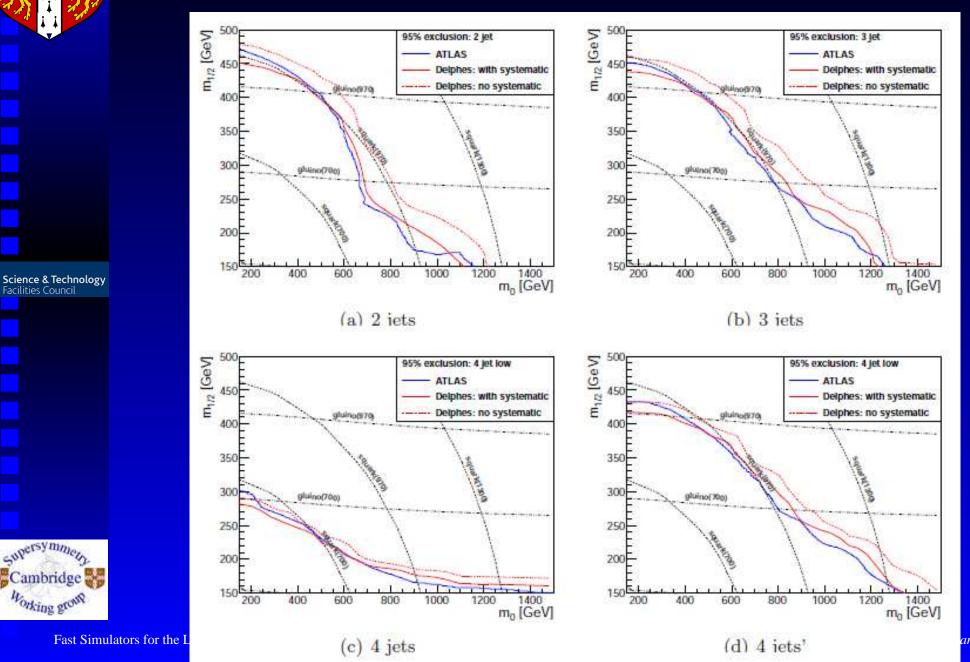
At any point in parameter space, one chooses the set of cuts with the greatest expected sensitivity^a.

^{*a*}ATLAS, arxiv:1109.6572

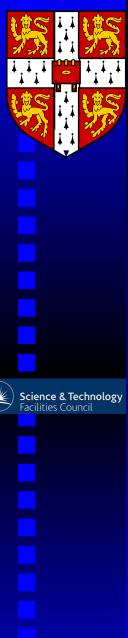
cience & Technology

Intepretation

The results give a lower limit of 1020 GeV for $m_{\tilde{a}} = m_{\tilde{a}}$ in the CMSSM. We wish to *reinterpret* the search in mAMSB, to find the exclusion there (and study if mAMSB evades the search). We simulate *signal* only, with HERWIG++-2.5.1, and use ATLAS' upper limits on $\sigma \times A \times \epsilon$. However we have to fit the signal systematics. This becomes more involved when you want to do a fit and reconstruct the likelihood. To validate then, you need also details on the statistics.

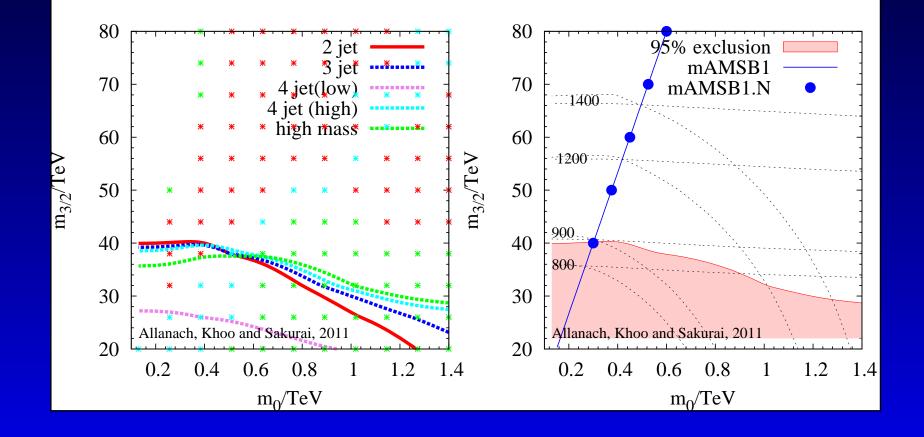

ATLAS Validation

,∔ 1


supersymmetry

Cambridge

Working grow



anach – p. 5

mAMSB Exclusion

Interpret ATLAS exclusion in a different model: mAMSB.

Feedback For Fast Simulators

- It was tricky in DELPHES1.9 to get it to compile, this took a while and involved me using the noFROG version. This is much better in v2.0.
- Providing a list of hepmc files was a bit annoying and the error message was non-obvious.

On the whole, my experience with DELPHES was extremely good - it did a pretty good job of simulating the full detector sim for our simple cases, and putting in a simple mass independent fudge factor to simulate the effect of systematic errors allowed us to model the experiments' acceptances well.

ence & Technolog

Recommendations For Fast Simulators

There is a problem using DELPHES in that it uses the HepMC format. These files are extremely big: in a 10x10 grid with 10000 signal events saved, one can have Terabytes of HepMC data.

- It would be useful to somehow rig up the piping of single events through your FastSim, preferably through standard input/output. This would allow faster debugging, and better use of statistics (sometimes one needs to simulate more/less events depending on the cuts acceptance).
- Is there any way to have a sort of HepMClight in order to reduce the size of saved HepMC files?

ence & Technolog

 $A_F B$

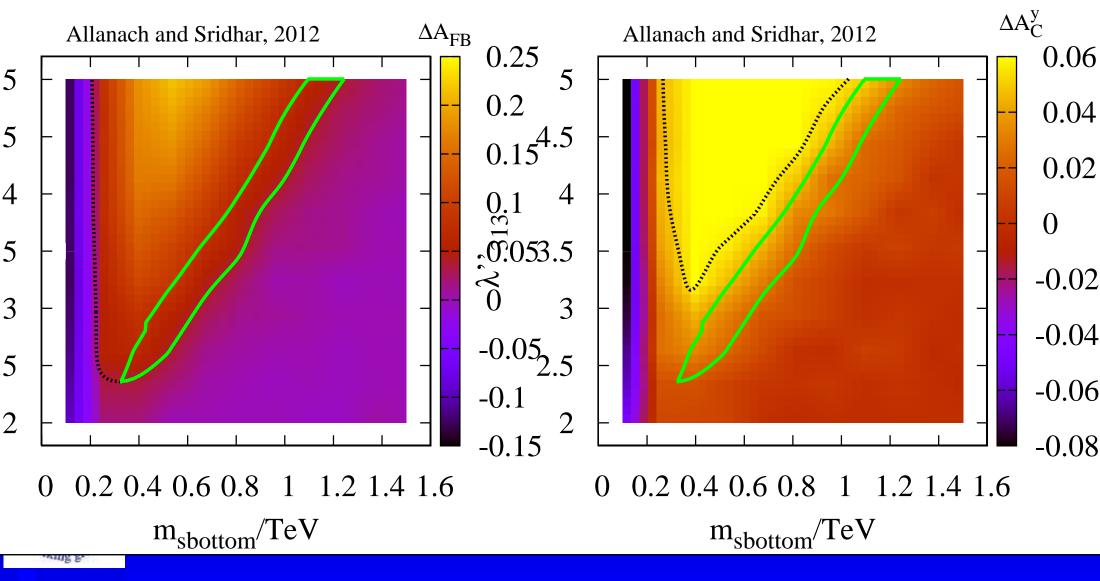

 $A_{FB} = \frac{N(c > 0) - N(c < 0)}{N(c > 0) + N(c < 0)}.$ 3 σ too high $W = \frac{\lambda_{313}''}{2} t_R d_R b_R$ $\frac{\lambda''_{313}^{*}}{d_R(p_1) + t_R(q_1)}$ $\frac{\delta_R(p_2) + \tilde{b}_R(q_2)}{\delta_R(q_2) + t_R(q_2)}$

Figure 1: SUSY contribution to A_{FB}^{a}

Fast Simulators for the LHBCA, Sridhar arXiv: 1205.5170

Calculate observables with MadGraph arXiv:1205.5170

Fast Simulators for the LHC

MadGraph1.4.5

Easy to compile, download and run. Just used simple scripting commands (gawk, sed) to analyse the event files.

Used the UFO file provided to define R-parity violation. Even though many couplings are set to zero, MadGraph still prints out their diagrams. Does it use them to calculate?

Again, MADGRAPH likes to work on a batch of events, and generating a stream of events as it works would be handy. The Les Houches event format is very light touch, and works well for very simple applications (eg $t\bar{t}$ production).

cience & Technology

Summary

- MadGraph easy to use.
- DELPHES doing a good job for simple searches, but I haven't tried the other fast sims.
- HepMC format rather heavy on memory.
- Bug reporting and the user interface could be tweaked I think.
- A stream of single events for all event generators would be handy.

ience & Technology