

Applications in BalticGrid

www.balticgrid.org sig.balticgrid.org

Algimantas Juozapavicius Margarita Kazakeviciute Vilnius University

EGEE'07, Budapest, Hungary, 1-5 October 2007

About BalticGrid Project

- BalticGrid (BG) project extends the European Grid by integrating new partners from the Baltic States (Lithuania, Latvia and Estonia) in the European Grid research community.
- BG fosters the development of Grid infrastructure in these countries.
- BalticGrid project started on 1 November 2005 and is a 30month effort.
- Enables scientists in the Baltic States to participate efficiently in the European Research Area.
- Develop and establish Special Interest Groups (SIGs) in significant application areas.
- Promote the Open Source Community by making of Open Source Software for the BalticGrid.

Partners

- KTH (Sweden)
- **EENET** (Estonia)
- Research institute NICPB (Estonia)
- IMCS University of Latvia (Latvia)
- Riga Technical University (Latvia)
- Vilnius University (Lithuania)
- Research institute ITPA (Lithuania)
- Research institute IFJPAN (Poland)
- Poznan Super computing national center (Poland)
- CERN (Switzerland)

New researches Cross-project communities

Lithuanian researches cooperation in ITER (International thermonuclear fusion experimental reactor).

Selection criteria

New application meets light peer review evaluating:

- Scientific impact
 - User community
 - Infrastructure

Research areas in BalticGrid

- **Pilot applications**
 - High energy physics
 - Material sciences
 - Bioinformatics
 - **Special Interest Groups (SIGs)**
 - Baltic Sea Eco-System Modelling
 - □ Text Annotation Service
 - □ Text-to-Speech Service
 - Stellar Spectra Computation
 - Atomic and Nuclear Computations
 - Computational Modelling of heterogeneous Processes
 - Multidimensional scaling
 - □ GAMESS (modeling of chemical, physical and biological processes)

- Application support
 - Application expert group
 - Migrating desktop, gridcom
 - Performance evaluation tools (G-PM, OCM-G)

High Energy Physics (HEP)

- Compact Muon Solenoid (CMS) is designed as a general-purpose detector, studying many aspects of proton collisions, contains subsystems which measure the energy and momentum of photons, electrons, muons, and other products of the collisions.
- Large Hadron Collider Beauty (LHCb) helps to simulate particle events in Large Hadron Collider, produces Monte Carlo data in the same form as a real collider detector.

NEW:

- Applications are implemented by supporting the existing VOs (in EGEE);
- Attracted HEP research groups in Baltic States, very intensive usage of grid resources;
- Statistical data analysis, based on HEP methods, is now applied to other areas of modeling.

Material Science

- GAMESS and Dalton (also MolPro and others, in addition) large scale modelling of the kinetics of meta-stable systems with application to advanced electronic materials, condensed matter physics, computes the energy of an assembly of nuclei and electrons placed in a repeated cells.
 - Applications are now separated into VO GAMESS, attracted numerous users as soon as they were implemented.
- New: The scope of research is now much broader:
 - computing of nano-scaled objects (separate research project emerged GridTechno).
 - □ Vilnius Parallel Shell Model Code (VPSM), also will be implemented as SIG.
 - □ GAUSSIAN software is now used (in addition);

Bioinformatics

- Applications for modeling biosensors and other reactiondiffusion processes;
- Applications for DNA sequence pattern discovery and the gene regulatory network reconstruction (Bash shell, Perl, archiving tools, storage of data)
- Set of common purpose Bioinformatics applications (can be used as subroutines or utilities)
- NEW: having large computing resources is really worth and essential to expand the scope of research

Special Interest Groups

Text annotation (syntactic parser for Latvian, applied to the text corpus to get linguistic annotation) - expands to other languages;

Text-to-speech (solving prosody modeling problem for Lithuanian language) - expands to other linguistic studies;

Baltic Sea Eco-system modeling (analysis for ecological-hydrodynamic model based on finite elements) - expands to sea operational models;

Computer modeling (application for computer simulation of electric field in phospholipidic membranes, the originating problem seeks understanding of Alzheimer's and Parkinson's diseases; based on various solvers for numerical algebra and differential equations, application to biochemistry, electrochemistry, etc.) - expands the scope of research.

Special Interest Groups

Nuclear and atomic (analysis of spectral characteristics of highly charged ions, Nuclear shell model with core) - the research expands and turns out to some ITER research topics;

Stellar spectra (modeling of stellar atmosphere) - expanding to large projects, like models of chemical evolution of galaxies.

SIGs expand in topics, in the scope of research, and in number of users.

Gridification guides

Detailed Tutorials on development of grid applications are available:

http://sig.balticgrid.org/tutorials/

Users having any problems, questions or need information generate a ticket (support@balticgrid.org).

The ticket is not closed until user confirms he is satisfied.

Conclusion on applications

- More than 20 scientific publications.
- Applications grouped by topics, similarity and used methods.
- Special Interest Groups formed and new are planed.
- High Energy Physics applications CMS and LHCb selected, they also include libraries and possibilities for statistical data analysis (especially analysis based on Monte Carlo).
 - Material sciences: VO GAMESS established (for licensing rules to be solved), DALTON selected, other applications determined.