

Health-e-Child: 010101 A Platform for European Paediatrics 110101 110101

Tamás Hauer University of the West of England, Bristol

HeC workshop, EGEE07

5 October 2007, Budapest

Motivation for the Project

- Clinical demand for integration and exploitation of heterogeneous biomedical information
 - vertical dimension multiple data sources
 - horizontal dimension multiple sites
- Need for generic and scalable platforms (Grid?)
 - integrate traditional and emerging sources
 - provide decision support
 - ubiquitous access to knowledge repositories in clinical routine
 - connect stakeholders in clinical research
- Need for complex integrated disease models
 - build holistic views of the human body
 - · early disease detection exploiting in vitro information
 - personalized diagnosis, therapy and follow-up

Objectives of Health-e-Child

- Build enabling tools & services that improve the quality of care and reduce cost with
 - Integrated disease models
 - Database-guided decision support systems
 - Cross modality information fusion and data mining for knowledge discovery
- Establish multi-site, vertical and longitudinal integration of data, information and knowledge
- Develop a GRID-based platform, supported by robust search, optimisation and matching

Health-e-Child workshop, EGEE07, October 5, 2007,

What's unique about Health-e-Child?

- Paediatrics:
 - Temporal component
 - Some adult concepts do not (directly) apply, existing models might be misleading
 - Different examinations, treatments, some cannot be performed
 - Align with adult models (follow-up ?) ... Not in project scope
- Vertical Integration
 - Collect, represent and present the information, knowledge in an integrated way
 - Integration as a means of novel diagnosis/classification
- Extreme heterogeneity
 - Diseases, modalities, standards, interest...

Focus on Paediatric Diseases

- Three Paediatric Diseases with at least partly unknown cause, classification and/or treatment outcomes
 - Heart diseases (*Right Ventricular Overload, Cardiomyopathy*)
 - Inflammatory diseases (Juvenile Idiopathic Arthritis)
 - Brain tumours (*Gliomas*)
- Many Clinical Departments
 - Cardiology
 - Rheumatology
 - (Neuro-)Oncology
 - Radiology
 - Lab (Genetics, Proteomics)
 - Administration, IT
- Main Modalities / Data Sources
 - Imaging (MR, US/echocardiography, CT, x-ray)
 - Clinical (Patient information, Lab results etc)
 - Genetics & Proteomics

A Geographically Distributed Environment

Integration Challenge: Applications

• Highlights

- Different Networks: LANs, WANs, Internet
- Security Constraints: Local & National Regulations
- Bandwidth Limitations: LAN/WAN & Internet uplinks

Health-e-Child gateway

- The HeC Gateway
 - An intermediary access layer to decouple client applications from the complexity of the grid
 - Towards a platform independent implementation
 - To add domain specific functionality not provided by the middleware

Status

- $\sqrt{\text{SOA} \text{ architecture}}$ and design
- √ implementation of privacy and security modules

Architecture

- Grid technology (gLite 3.0) as the enabling infrastructure
 - A distributed platform for sharing storage and computing resources
- HeC Specific Requirements
 - Need support for medical (DICOM) images
 - Need high responsiveness for use in clinical routine
 - Need to guarantee patient data privacy:
 - > access rights management
 - storage of anonymized patient data only

Status

- √ Testbed installation since May 2006
- $\sqrt{\text{HeC Certificate Authority}}$
- $\sqrt{10}$ HeC Virtual Organisation
- $\sqrt{\text{Security Prototype (clients & services)}}$

Common Client Applications

USB key solution

- authentication
- basic functionality + applications that do not require specific resources
- available from any PC supporting USB in the hospital without SW installation
- autorun from Windows XP

Supports basic functionality

- browsing, viewing, editing patient data
- safety, security, privacy, anonymisation
- similarity search

Status

 $\sqrt{authentication (certificate$ $based single sign-on)}$ $\sqrt{simple browsing and viewing}$

Integration Challenge: Data Modelling

Health-e-Child Data

- Unstructured (file-based)
 - DICOM
 - Images (MRI, CT, x-ray)
 - Movies (US)
 - Molecular/Genetics data
- Semi-structured
 - Derived
 - Clinical data
 - Patient history
 - Diagnostics
 - Treatment
- Semantic annotations
 - Image annotations
 - Case annotations, Diagnosis
 - Links to external sources

Health-e-Child workshop, EGEE07, October 5, 2007,

General Patient Information and Family History

- Patient
 - ReferenceID
- Family History
 - How to capture
 - Relative has/had a Disease
 - Disease in family
 - Pedigree up to 3 predecessors
 - Original vs Derived data
 - Incomplete, missing data

Patient Data Hierarchy

- **Clinical Variable** •
 - Atomic piece of data

Patient

- e.g. Joe's weight measurement - 50 kg
- **Medical Event** •
 - Action on a patient
 - ExtRefID
 - e.g. DICOM StudyInstanceUID
 - E.g. Joe's physical examination

Visit

Grouping/Context

Clinical Variables

Patient

ID: INTEGER

Sex: SexType

- Actual atomic clinical data • from clinical protocols – instance base
- Attached to Medical Events •
- Described by Clinical Variable • Types
- Can be related to each other •
- Specialization/Categories of • clinical variables
 - Measurement
 - Annotation ۲
 - **DICOM** Data ۲
 - **Observation By** • Classification
 - **External Resource** •
 - Medical Concept

Health-e-Child workskopyhage ECG who ber 5, 2007,

Clinical Variables Categories

- Measurement
 - any estimation of the physical quantity (e.g. height, weight, heart rate, RV volume etc.).
 - a numeric value associated with a unit of measurement (e.g. 170cm, 50kg, 72 bpm etc.)
- Annotation: any free text (e.g. comment, note, explanation etc.).
- Observation By Classification
 - classification-based assessment
 - Selection from a list of predefined values
 - Example: severity of RV dilation : ("no", "moderate", "severe")
- DICOM Data
 - Specialized container to store the relevant image associated data (image meta-data)
 - Currently unique DICOM identifiers (e.g. SOPInstanceUID, StudyInstanceUID etc.) + a few DICOM tags (e.g. Modality)
- External Resource
 - any source of the binary data and identified by URI
 - no assumption on the structure of the data in the resource
 - Example: a file on the Grid identified by its Logical File Name (LFN)
- Medical Concept
 - "tagging" any medical event / other clinical variable with medical concept from the knowledge base
 - Example: Joe's diagnosis "Oligoarthritis" is stored as a reference to the knowledge base (as opposed to recording as a string)

Health-e-Child

Metadata Model

- Describes the data model
 - Kinds of data that can be stored (Clinical Variable Types)
 - How data is organized/grouped (Medical Event Types)

Example: Measurement

Layer	Statement	Meaning
MetaData	ClinicalVariableType(ID= 1 , Name="Systolic LV volume", Caterogy=" MSR ")	"Systolic LV Volume" <u>is a</u> <u>ClinicalVariableType</u> , the kind of which is "MEASUREMENT"
MetaData	Unit(ID= 2 , Name="Milliliters per square meter", Abbr="mL/m2")	"Milliliters per square meter", abbreviated as "mL/m2" <u>is a Unit</u>
MetaData	MeasurementUnit(VarTypeID= 1 , UnitID= 2 , UseByDefault=Y)	The unit "mL/m2" defined above <u>is</u> <u>used to measure</u> the Clinical Variable Type "Systolic LV Volume"
Data	ClinicalVariable(ID=3, VarTypeID=1, AcquisitionDate=???, ValueNotAvailable=N)	The Clinical Variable (identified with ID=3) <u>is of ClinicalVariableType</u> "Systolic LV volume"
Data	Measurement(VariableID= 3 , UnitID= 2 , VarTypeID= 1 , Value=30.5)	The above clinical variable, whose type is "Systolic LV volume" <u>was</u> <u>measured</u> in units of mL/m2 to be 30.5

Content of data model layers

Health-e-Child workshop, EGEE07, October 5, 2007,

Data Access – Medical Query Processing

- Queries specified by
 - end-users
 - client applications
- Common entry point: HeC gateway
- Query workflow elements:
 - Semantic query rewriting
 - Query planning and distribution
 - Special operators -> workflow planning
 - Querying the dynamic schema
 - Database queries
 - Catalogue query, gLite SE request

Demonstrator: Similarity Search

Similarity search	\mathbf{X}
Brain tumour study Grain tumour study Grain tumour study Grain region Detailed site Detailed si	Number of cases: 5
	7
_A	Apply Cancel

- search context is defined as a subset of (groups of) features of interest from the pre-defined feature hierarchy
- implementation in Java, Eclipse IDE, Window Builder Pro for GUI
- Weka open-source machine learning library for basic data management
- 2 initial domains: brain tumor and cardiology; extensible

Demonstrator: Visualization

current prototype: distance maps and heatmaps are combined to visualise inter-patient distances, clinical, imaging and genetic features simultaneously future work: treemaps and neighbour-hood graphs will be integrated for patient similarity visualization

Clinical and Application Roadmap

