

Workflow-based medical image analysis algorithms assessment *Medical imaging session*

Johan Montagnat EGEE'07 Budapest, October 3rd, 2007

www.eu-egee.org

- Assessment of rigid registration algorithms
 - Lack of reference or "gold standard"
 - Experimental framework to re-evaluate in different conditions
- A statistical solution
 - The Bronze Standard method
- A grid implementation
 - Workflow-based
 - The larger the test sample, the more accurate the evaluation

- N images, m algorithms
- N.(N-1).m transformations measured
- N-1 transformations to estimate

Redundancy

- Exploit redundancy to compute
 - Mean transformations T_{ii} (Bronze standard)
 - Variances on the transformations (Accuracy)

- 126 images
- 2 time points minimum
- Gadolinium injected T1 MRIs
- Example for one patient (3 time points):

CGCC MOTEUR-based implementation

- Computing weight
 - 126 image pairs x
 4 algorithms x 6
 CR = 3024
 registration
 computations
 - 7.5 days on a single PC
 - 4.8 hours on
 Grid'5000

• Optimization criterion:

eeee

Several basins of attraction

Enabling Grids for E-sciencE

Problems of convergence

- Robustness: ability to find the right transformation (success/failure)
 - Number of outliers detected by the X^2 test + visual inspection
- Accuracy: variability w.r.t. the ground truth
 - Distance to the BS computed on uncompressed images

• Mean error on the transformations:

 $\sigma_r = 0.130 \ deg$; $\sigma_{\tau} = 0.345 \ mm$

• Error on the bronze standard:

 $\sigma_r = 0.05 \ deg$; $\sigma_{\tau} = 0.148 \ mm$

• Accuracy of the algorithms:

Algorithm	$\sigma_{ m r}(deg)$	$\sigma_{\rm t}(mm)$
CrestMatch	0.150	0.424
PFRegister	0.180	0.416
Baladin	0.139	0.395
Yasmina	0.137	0.445

- 3D-SPIHT algorithm
 - Zero-tree-based compression algorithm
 - Very good performances reported for 2D
 - Extended to 3D (3D wavelet transform)
- Compression Ratio (CR)
 - 6, 12, 24, 48, 64
 - Example without
 compression and
 at CR=64:

Comparing to the results without compression

Enabling Grids for E-sciencE

Legend

Enabling Grids for E-sciencE

Baladin and Yasmina are the more robust (multiscale strategies)

eGee

Accuracy results

Enabling Grids for E-sciencE

Performance
acceptable up
to CR=64
Improvement of
Baladin

eGee

- Quantitative assessment of rigid registration algorithms
- Impact of lossy compression on rigid registration of brain images
 - Loss of robustness
 - Good accuracy
- Grid-computing for medical imaging algorithms assessment
 - Exploit databases
 - Compare algorithms
 - Explore parameters space