

On the evaluation of platforms for remote instrumentation on the Grid

Constantinos (Costas) Kotsokalis Greek Research and Technology Network (GRNET)

EGEE'07, Budapest, 1-5 October 2007

www.eu-egee.org

- **RINGrid WP6 work**
 - WP just started
 - About this presentation

Presentation contents

- Current available solutions
- Gaps
- Strategic goals
- Methodology
- Tangible results

- Solutions for Remote Instrumentation on the Grid
 - Mostly presented in "RINGrid: Evaluation of Remote Instrumentation Infrastructures" by Martin Polak
- GRIDCC
 - EU project, finished on 31/08/07
- CIMA
 - US effort, ongoing
- VLAB
 - Polish national project, ongoing
- UCRAV
 - Developed in Chile, in production
- •

4

- Design: Limited use cases
 - Instrument types and scale
 - Domain-specific parameters in design time
 - Reliability (technical)
 - E.g. short-term vs long-term experiments
- Infrastructure: Interactivity
 - The networking factor
- Social: Reliability
 - The instrument calibration example
- ...but are these the only ones? Do we really know what scientists want from Remote Instrumentation Infrastructures (RIIs)?

- Verify whether current RIIs are sufficient for scientists and cover their requirements
- Identify most or all relevant gaps and problems
- Come up with useful features they may not expect
 - E.g. workflow management for complete experiments, special visualisation capabilities, etc
- Design a typical use case (the least common denominator)
- Design a conceptual model (architecture) for generic RIIs
- Provide recommendations and best practices

Methodology (1)

- First questionnaire (preparation)
 - Let's not constrain scientists
 - Have them explain steps of their daily experiments
 - Then possibly ask them what they would expect if suddenly the equipment was taken away
 - Expected reply: No difference
 - Maybe we can decide on what functionality is not negotiable though
- Based on the questionnaire & use cases, decipher technical requirements
- Prepare a testbed
 - Ability to make small or significant testbed implementation changes
 - See how this affects experiments

- Second questionnaire (experimentation)
 - Should be completely user-oriented (domain-specific)
 - Issue: How to make it generic enough for everyone? (probably w/ draft typical use case)
- Keep track of:
 - Show-stoppers
 - Annoyances
 - Pleasant surprises
 - Exact time of experimentation
 - ...to match w/ network-related issues
 - Overall comments

Methodology (3)

8

- Experimentation process
 - Gather statistical information on user set
 - Age, English language fluency, IT competency, others
 - Training
 - Reference material on paper
 - Course on using the platform
 - Task execution & submission of completed questionnaires

Evaluation

- How many / which tasks could not be completed?
- How many / which tasks were completed incorrectly?
- What was the level of overall user satisfaction?
- What were the major changes for users, in relation to local instrumentation?

9

- Experiment scenarios ==> Normative description of Remote Instrumentation experiment workflow ("typical use case")
- Conceptual design ("architecture") of RIIs
 - Will build on current best practices
 - Emphasis on the network and user interfaces
- Effort to touch on authorisation and policy issues
 - What would instrument providers never accept to provide?
 - What kind of functionality would instrument users never accept to give away?
- Results to serve as guidelines for the design of future infrastructures
 - RISGE-RG

Thank you!

http://www.ringrid.eu/

ckotso@admin.grnet.gr

EGEE-II INFSO-RI-031688

On the evaluation of platforms for remote instrumentation on the Grid 10