

Enabling Grids for E-sciencE

Source Distribution and RPM Signing in the gLite Release Process

EGEE07 Conference, Budapest, 1-5 Oct 2007 The gLite Release Process and Porting Session Juha Herrala, SA3/CERN

www.eu-egee.org

INFSO-RI-508833

Overview

Enabling Grids for E-sciencE

- Releasing gLite 3.1 vs. 3.0
- Source distribution
- Signing RPMs
- Discussion

- Enabling Grids for E-sciencE
- ETICS as a build engine for gLite 3.1
 - instead of the gLite 3.0 build system.
- Driven by patches, packages are picked from the ETICS repository
 - and inserted in the gLite repository.
- Releases and updates per node type
 - no longer releases and updates for the whole middleware.
- Releases for multiple platforms
 - Currently the ETICS project provides the required system architecture (32/64bits) and operating system variants (slc3/slc4/etc).
- Main challenges
 - Growing number of architecture/os combinations
 - Consequences to development, testing and certification activities
 - How to best manage patch information and repositories
 - How to use the ETICS system in an optimal way
 - And how to move to developer-driven builds with ETICS

- Currently only binaries are distributed
 - Approach for the source distribution depends of the requirements received from the community
 - For example, software reviews require lighter-weight system in place than installation from source.
- The mapping information between binary rpm packages and source CVS tags is already available in the build system (ETICS).
 - But that information is not easy to extract
- Three basic options for enhancement
 - Distributing CVS tags with the middleware
 - Distributing source tarballs
 - Distributing source RPMs (installation?)
- Distributing CVS tags with the middleware
 - Tags could be embedded in the RPM packages.
 - Alternatively mapping between RPM versions and CVS tags could be made available outside of the build system.
- Distributing source tarballs
 - Tarballs could be created during ETICS build and copied in the ETICS repository with the binary RPM.

- Distributing source RPMs
 - ETICS supports building source RPMs by activating another switch in the build config: --createsource
 - But, ETICS does not guarantee installable source RPMs.
 - Package managers and developers should provide correct configs/specs/requirements for proper build of source RPMs.
- Testing and certifying responsibilities of the source distribution remain with the integration team.
 - Limited resources
- Generally it should be agreed:
 - Method to put in place: CVS tags, tarballs, srpms?
 - Should installation from source be supported..
 - Should the tarballs contain installation instructions?
 - Should all the released srpms install?
 - Which are the supported architecture/os combinations?
 - Defining the process and sharing the effort and responsibilities

Signing RPMs

- Currently the RPMs in gLite releases have not been signed.
 - Lately there has been more frequent requests for signed packages.
- An RPM package can be signed in different ways:
 - Signing a package at build-time.
 - Replacing the signature on an already-existing package.
 - Adding a signature to an already-existing package.
- In addition, within the gLite build and release process, there are several possible phases to sign the packages, for example,
 - artifacts could be signed in the end of the build process
 - ETICS could sign when the artifacts are copied in the ETICS repository
 - "mirrored" ETICS repository containing signed rpms
 - gLite release management tools could sign when the packages are taken from the ETICS repository and inserted into the gLite (certification) repository
 - when moved to pre-production service
 - when released to production service
- Signing in the end of the build process
 - Change in build scripts
 - (Private) key management challenge
 - There would only be signed rpms available in all repositories

Signing RPMs

Enabling Grids for E-sciencE

- ETICS signs artifacts when copied in the repository
 - Would require effort from the ETICS team to implement
 - There would only be signed rpms available
 - Does not concern developers, release process
- "Mirrored" ETICS rpm repository with signed RPMs
 - Source for gLite release management tools
 - Both signed and unsigned (ETICS) rpms available
- Signing when packages are inserted into the gLite certification repository
 - Central effort
 - Both signed and unsigned (ETICS) rpms available
- Signing when released to pre-production or production
 - A centralized effort not involving developers and ETICS
 - Both signed and unsigned (ETICS) rpms available
- Which packages to sign
 - Packages released "from now on"
 - Already released packages as well
 - External packages will not be signed
- Key distribution
 - Public key of the signing entity should be available and inserted in the RPM database of all gLite nodes requiring signed packages.

- Should gLite source distribution be enhanced?
- Three basic options for enhancement:
 - Distributing CVS tags with the middleware
 - Distributing source tarballs
 - Distributing source RPMs (installation?)
- Should gLite RPM packages be signed?
- Several strategies for signing, for example:
 - Artifacts could be signed in the end of the build process
 - ETICS could sign when the artifacts are copied in the ETICS repository
 - Implementing a "mirrored" ETICS repository containing signed rpms
 - When the packages are taken from the ETICS repository and inserted into the gLite (certification) repository
 - When moved to pre-production service
 - When released to production service