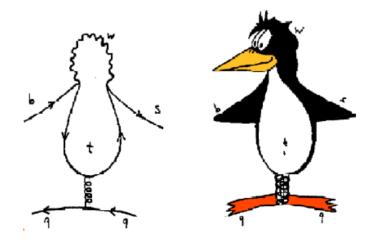
Electroweak penguin decays as probes of physics beyond the Standard Model


Mitesh Patel (Imperial College London) LHC Seminar, 8th May 2012 on behalf of the LHCb Collaboration

The interest in EW penguins

- Standard Model has no tree level Flavour Changing Neutral Currents (FCNC)
- FCNC only occur as loop processes, proceed via penguin or box diagrams – sensitive to contributions from new (virtual) particles
 → Probe masses > E_{CM} of the accelerator
- e.g. $B^0 \rightarrow K^{*0}\gamma$ decay

A historical example – $B^0 \rightarrow K^{*0}\gamma$

 \mathbf{W}^{-}

 H^{-}


 $\tilde{\chi}^0$

 $V_{\rm ts}$

 V_{tb}

 $b \rightarrow s \gamma$

- In SM : occurs through a dominating W-t loop •
- Possible NP diagrams : •
- Observed by CLEO in 1993, two years before ulletthe direct observation of the top quark
 - BR was expected to be (2-4)×10⁻⁴
 - \rightarrow measured BR = (4.5±1.7) ×10⁻⁴

Theoretical Foundation

• The Operator Product Expansion is the theoretical tool that underpins rare decay measurements – rewrite SM Lagrangian as :

$$\mathcal{L} = \sum_{i} C_{i} O_{i}$$

- "Wilson Coefficients" C_i
 - Describe the short distance part, can compute perturbatively in given theory
 - Integrate out the heavy degrees of freedom that can't resolve at some energy scale μ
- "Operators" O_i
 - Describe the long distance, non-perturbative part involving particles below the scale $\boldsymbol{\mu}$
 - Account for effects of strong interactions and are difficult to calculate reliably

\rightarrow Form a complete basis – can put in all operators from NP/SM

Observables in EW penguin decays

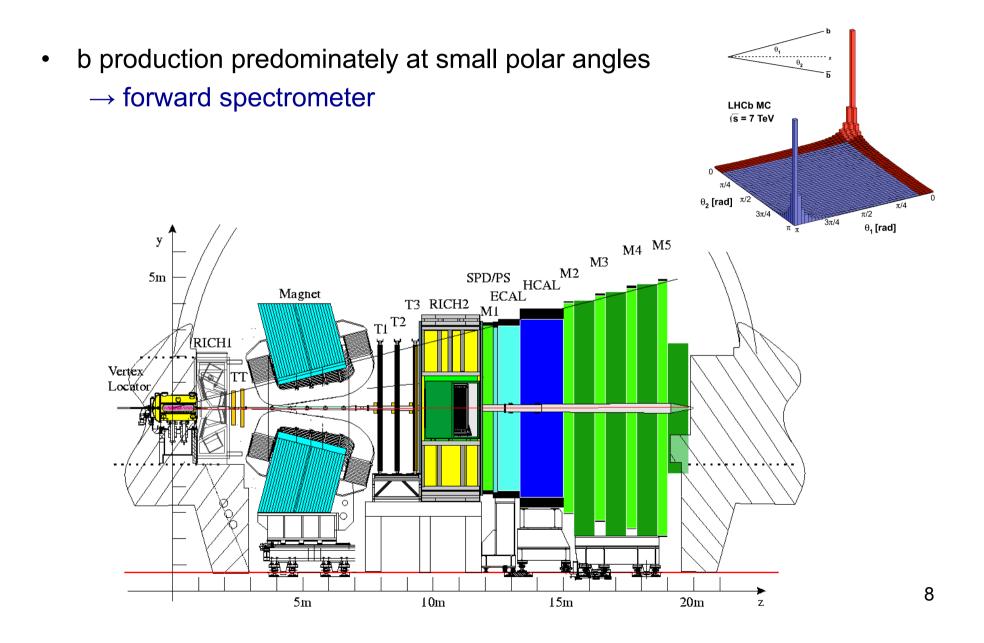
- Measuring branching fraction of EW penguin decays → information on mass, coupling
- Can also make a different class of measurements probe the helicity structure :
 - If decay mediated by Z boson expect L&R-handed contributions, measure ratio of the two
 - If decay mediated by NP ????
- Have two options :
 - (Only states with same polarisation/helicity can interfere) → measure time dependent CP violation where tag if have a B or a \overline{B}
 - Use self-tagging channels e.g. sign of K[±] from K^{*0} \rightarrow K π decay indicates whether had a B or $\overline{B} \rightarrow$ angular analysis

Outline

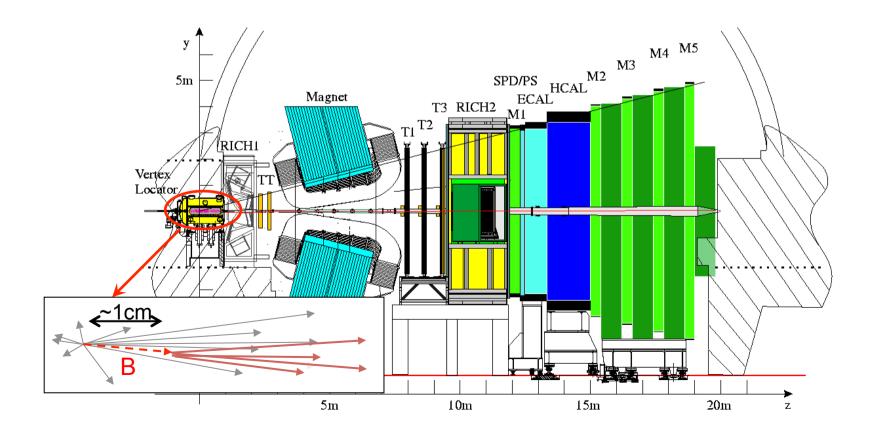
- The LHCb detector and trigger
- Angular analysis of the decay $B^0 \rightarrow K^* \mu \mu$
- The search for the decay $B^+ \rightarrow \pi^+ \mu \mu$
- The isospin asymmetry in $B \rightarrow K^* \mu \mu$ and $B \rightarrow K \mu \mu$ decays – Shown in public for first time ... interesting results
- A_{CP} in $B^0 \rightarrow K^{*0}\gamma$

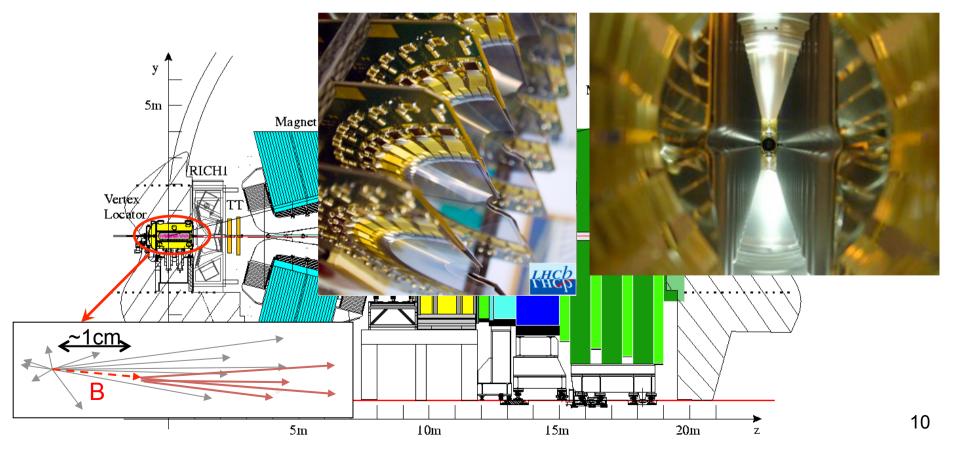
(All results from the full 1fb⁻¹ of integrated luminosity collected in 2011)

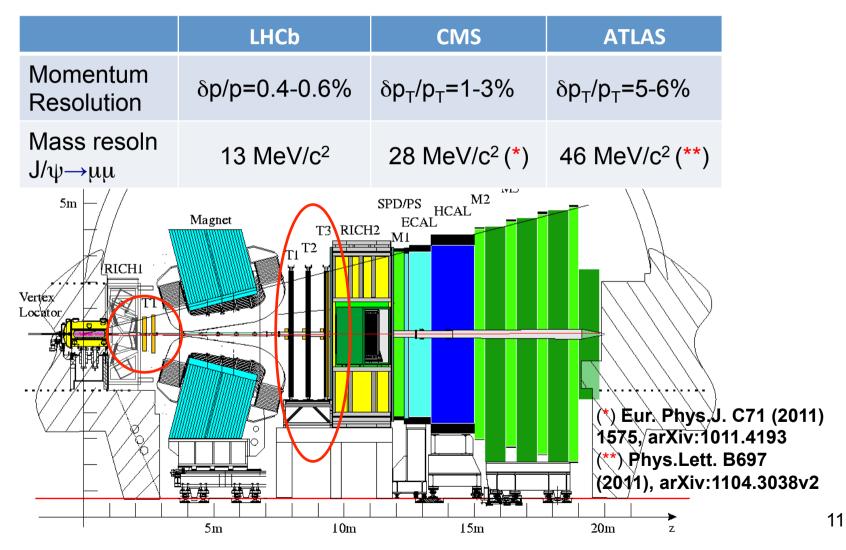
The Experimental Environment

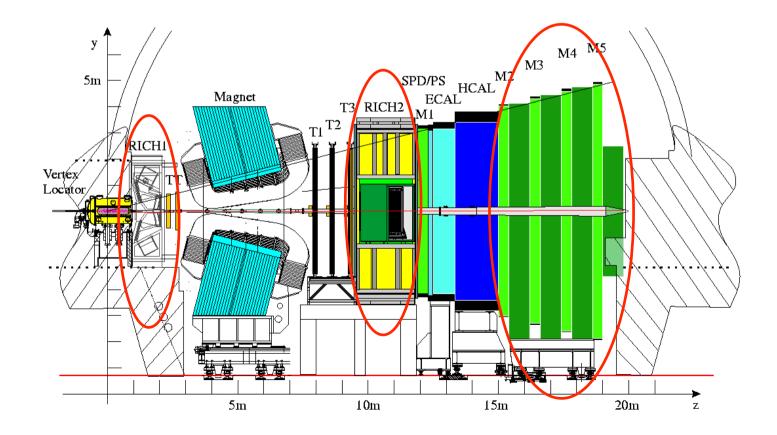

- LHC produces a huge number of B decays
 - $\sigma(b\overline{b}) = 280\mu b$ @ LHC, 7TeV (**) (approx. linear with energy)
 - $\sigma(b\overline{b}) = 0.001 \mu b$ @ B factories
- At the LHC σ(pp, inelastic) @ √s=7 TeV ~60 mb, only 1/200 events contains a b quark, looking for BR ~10⁻⁶-10⁻⁹ enormous demands on detector and trigger

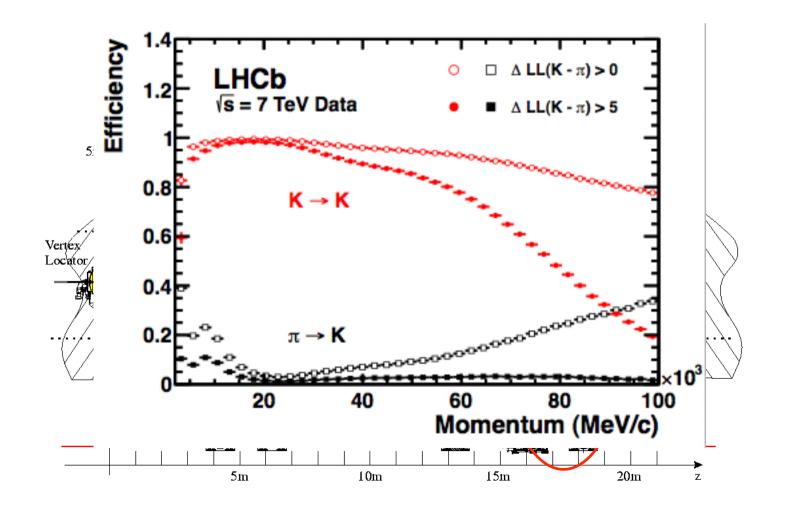
 \rightarrow The LHCb experiment

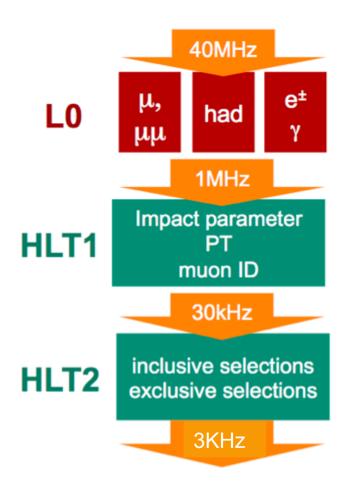

(**) LHCb, Phys. Lett. B 694 (2010) 209-216




- B lifetime \rightarrow displaced secondary vertex
 - Need few interactions/event \rightarrow operate at luminosity 10–50 times lower than central detectors
 - Vertex detector capable of picking out the displaced vertex


- B lifetime \rightarrow displaced secondary vertex
 - Need few interactions/event \rightarrow operate at luminosity 10–50 times lower than central detectors
 - Vertex detector capable of picking out the displaced vertex


• Precision momentum resolution \rightarrow mass resolution

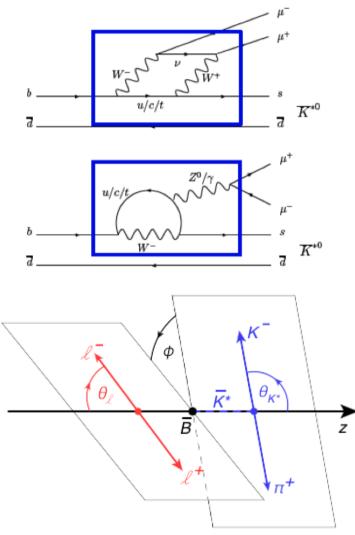

 Events dominated by pions – separating kaons (→RICH 1,2) produced in B events and muons (→M1-5) critical

 Events dominated by pions – separating kaons (→RICH 1,2) produced in B events and muons (→M1-5) critical

The LHCb Trigger

- Small event size (60kB)
 → large bandwidth
- Allows low thresholds

L0 Hardware	"high p_T " signals in calorimeter and muon systems
HLT1 Software	Partial reconstruction, selection based on one or two (dimuon) displaced tracks, muon ID
HLT2 Software	Global reconstruction (very close to offline) dominantly inclusive signatures – use MVA


+ Global Event Cuts for events with high multiplicity

	Charm	Had. B	Lept. B	
Overall efficiency	~10%	~40%	~75-90%	4

 $B^0 \rightarrow K^* \mu \mu$

 $B^0 \rightarrow K^* \mu \mu$

- Flavour changing neutral current \rightarrow loop
- Sensitive to interference between $O_{7\gamma}$, $O_{9,10}$ and their primed counterparts
- Exclusive decay → theory uncertainty from form factors
- Decay described by three angles, θ_{I} , θ_{K} and ϕ , and $q^{2} = m^{2}_{\mu\mu}$, self-tagging \rightarrow angular analysis allows to probe helicity
- Multitude of angular observables in which uncertainties cancel to some extent e.g.
 A_{FB} – asymmetry in θ_I distribution

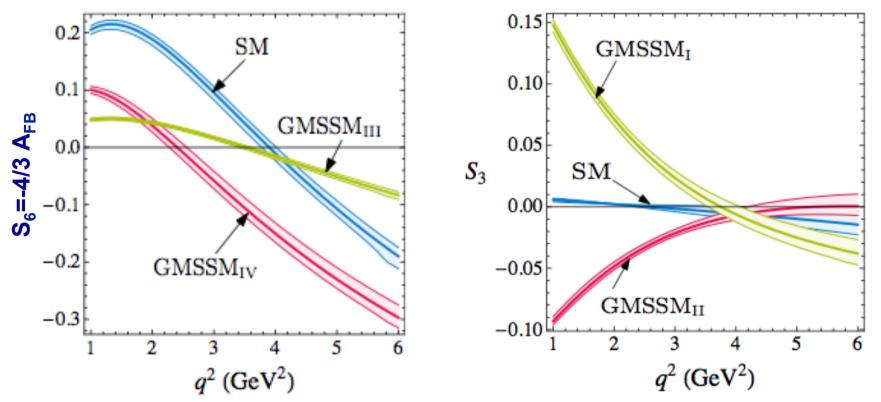
$B^0 \rightarrow K^* \mu \mu - angular analysis$

• Full angular distribution :

 $\frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\phi\,\mathrm{d}q^{2}} \propto I_{1}^{s}\sin^{2}\theta_{K} + I_{1}^{c}\cos^{2}\theta_{K} + \left(I_{2}^{s}\sin^{2}\theta_{K} + I_{2}^{c}\cos^{2}\theta_{K}\right)\cos2\theta_{\ell} + I_{3}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos2\phi + I_{4}\sin2\theta_{K}\sin2\theta_{\ell}\cos\phi + I_{5}\sin2\theta_{K}\sin\theta_{\ell}\cos\phi + (I_{6}^{s}\sin^{2}\theta_{K} + I_{6}^{c}\cos^{2}\theta_{K})\cos\theta_{\ell} + I_{7}\sin2\theta_{K}\sin\theta_{\ell}\sin\phi + I_{8}\sin2\theta_{K}\sin2\theta_{\ell}\sin\phi + I_{9}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\sin2\phi$

- Apply "folding" technique: $\phi \rightarrow \phi + \pi$ for $\phi < 0$. This cancels terms with I_4 , I_5 , I_7 , I_8
- Fitting these angles allows access to angular observables where the hadronic uncertainties are under control :
 - F_L, the fraction of K^{*0} longitudinal polarisation
 - A_{FB}, the forward-backward asymmetry and zero-crossing point
 - $S_3 \propto A_T^2(1-F_L)$, the asymmetry in K^{*0} transverse polarisation
 - A_{IM}, a T-odd CP asymmetry

$B^0 \rightarrow K^* \mu \mu - angular analysis$

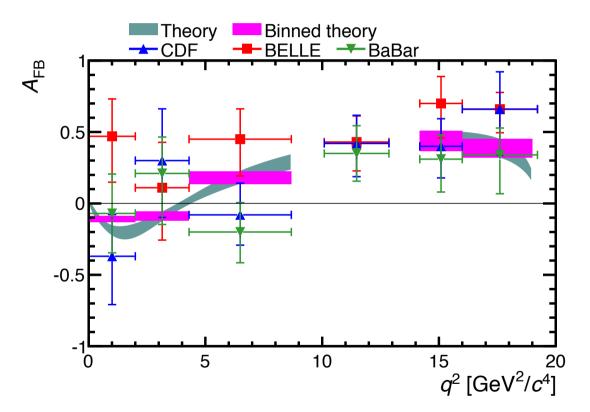

• Full angular distribution :

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} \propto F_L\cos^2\theta_K + \frac{3}{4}(1-F_L)(1-\cos^2\theta_K) + F_L\cos^2\theta_K(2\cos^2\theta_\ell) + \frac{1}{4}(1-F_L)(1-\cos^2\theta_K)(2\cos^2\theta_\ell-1) + \frac{3}{4}(1-F_L)(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\cos 2\phi + \frac{4}{3}A_{FB}(1-\cos^2\theta_K)\cos \theta_\ell + A_{Im}(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\sin 2\phi$$

- Apply "folding" technique: $\phi \rightarrow \phi + \pi$ for $\phi < 0$. This cancels terms with I_4 , I_5 , I_7 , I_8
- Fitting these angles allows access to angular observables where the hadronic uncertainties are under control :
 - F_L, the fraction of K^{*0} longitudinal polarisation
 - A_{FB}, the forward-backward asymmetry and zero-crossing point
 - $S_3 \propto A_T^2(1-F_L)$, the asymmetry in K^{*0} transverse polarisation
 - A_{IM}, a T-odd CP asymmetry

The interest in $B^0 \rightarrow K^* \mu \mu$

Observables highly sensitive to NP contributions to C₇^('), C₉^('), C₁₀^(')

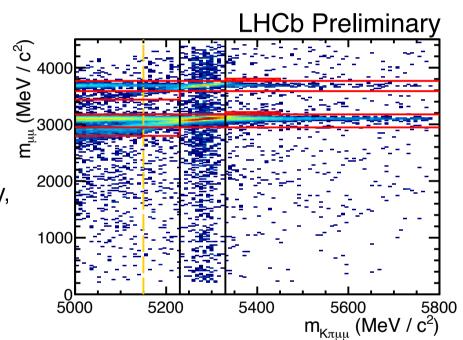


W.Altmannshofer et al. [arXiv:0801.1214]

• A_{FB} zero crossing point particularly well predicted by theory

(Pre-LHC) Experimental Status

• Babar, Belle, and CDF have all measured ang. asymm. A_{FB} :



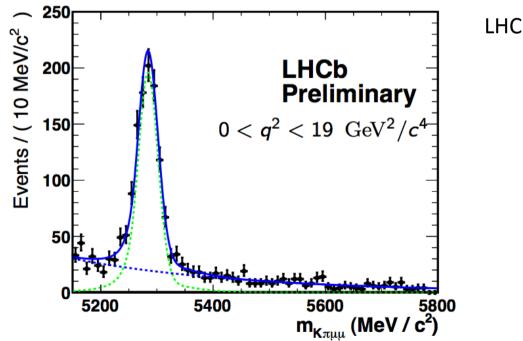
• Measurements look consistent with each other but errors still large

Theory prediction from C. Bobeth et al. [arXiv:1105.0376] (and ref. therein) BABAR: PRL 102, 091803 (2009); CDF: arXiv:1108.0695v1; Belle: PRL 103, 171801 (2009)

LHCb Event Selection

- Use a Boosted Decision Tree to make event selection
 - Signal sample $-B^0 \rightarrow K^* J/\psi$ data (~100× more statistics than signal)
 - Bkgrd sample B⁰→K^{*}µµ mass sideband events
 - Use information about the event kinematics, vertex and track quality, impact parameter and particle identification information
- Remove $m_{\mu\mu}$ regions containing $B^0 \rightarrow K^* J/\psi$, $B^0 \rightarrow K^* \Psi(2S)$

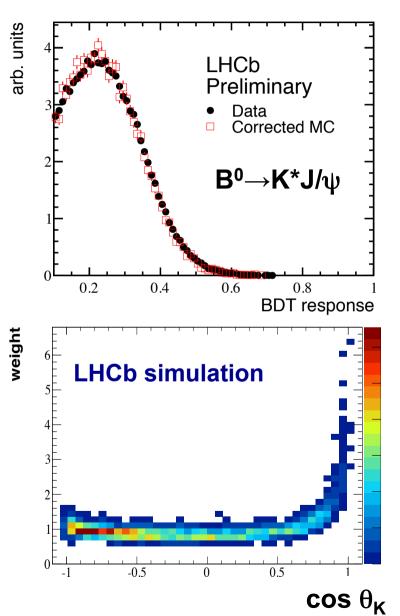
IHCb-CONF-2012-008

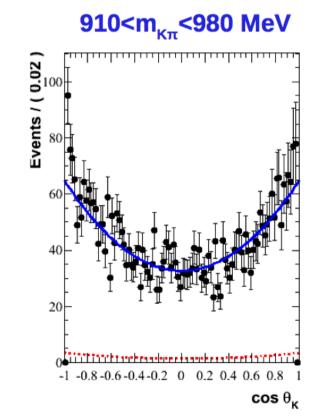

Number of peaking backgrounds treated with specific vetos

- e.g. $B^0 \rightarrow K^* J/\psi$ with $\pi \leftrightarrow \mu$ swap

 \rightarrow total peaking bkgrds <2% of signal

LHCb Event Selection


- With 1.0 fb⁻¹ find 900 \pm 34 signal events (BaBar + Belle + CDF ~ 600)
- B/S≈0.25 in region 5230 < m_{Kπuu} < 5330 MeV/c²
- Selection does not induce further biases in angles and q² cf reconstruction/trigger – biases that are introduced are primarily from detector geometry – easy to model

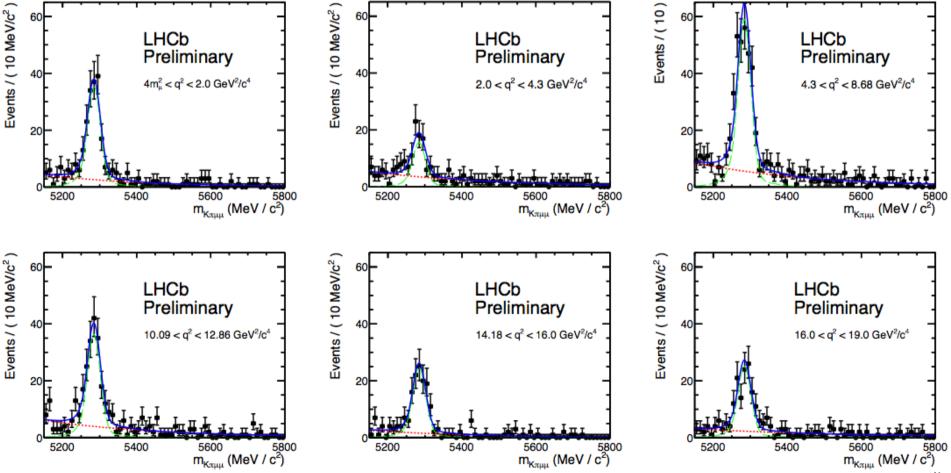

Acceptance Correction

- Correct angular and q² distributions for the effect of the detector and selection
- Use a binned acceptance correction derived from LHCb simulation
- Simulation quality verified with range of control channels which are selected from the data (B⁰→K*J/ψ, J/ψ→μμ, D*→D⁰(Kπ)π)
 - Tracking efficiency
 - Hadron (mis-)identification probabilities
 - Muon (mis-)identification
 - Overall momentum and η distributions

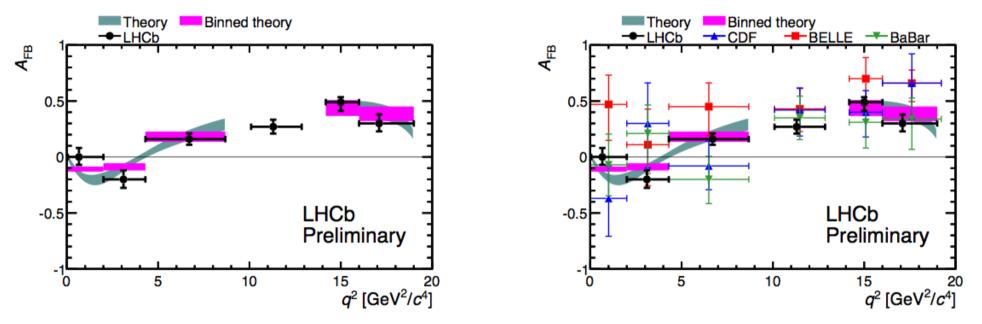
Fit Procedure and Validation

- Perform a unbinned maximum-likelihood fit to the mass and $(\theta_l, \theta_K, \phi)$ distribution in bins of q^2
- Toy simulation studies used to verify behaviour of fit
- Also validated on data using $B^0 \rightarrow K^* J/\psi$
 - A_{FB} consistent with zero, as expected
 - s-wave contribution induces an asymmetry in $\cos \theta_{K}$ distribution, A_{FB}^{K}
 - Variation of A_{FB}^K with m_{Kπ} matches BaBar data(**) across m_{Kπ} range

Systematics

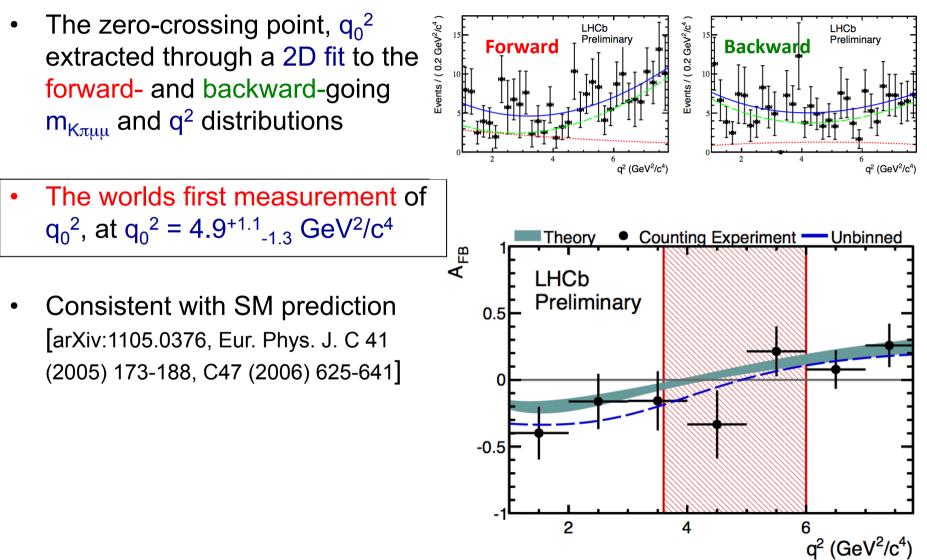

- Consider effects that are q²-dependent or modify the angular distribution and might be incorrectly modelled by the simulation
 - Uncertainties on all of the data-driven corrections
 - Inclusion of an S-wave component
 - Knowledge of the detector acceptance
 - Variation of mass resolution with q^2
 - Uncertainty from B(B⁰ \rightarrow K*J/ ψ (\rightarrow µµ))
 - Variation of level/shape of residual peaking backgrounds

— ...

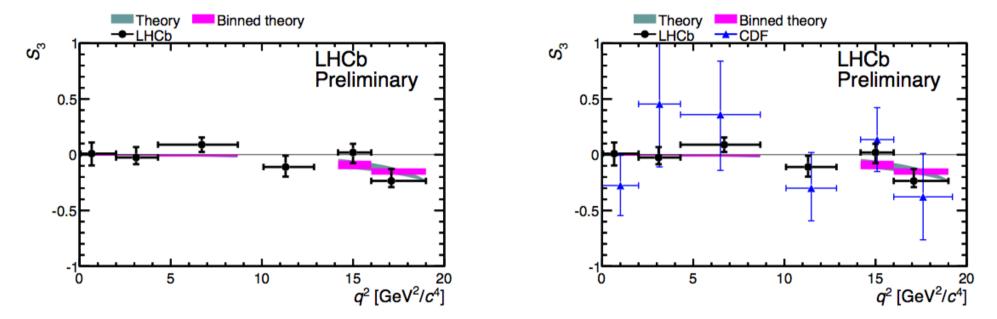

• Effects are small, measurements are statistically dominated

Event yields

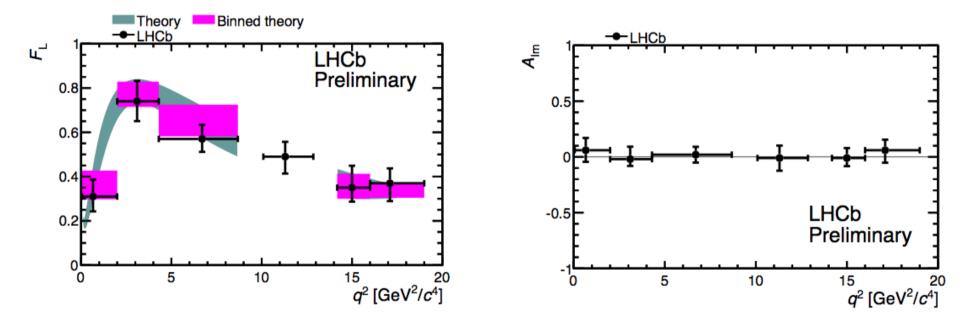
• Observe events with $>>5\sigma$ significance in each q² bin



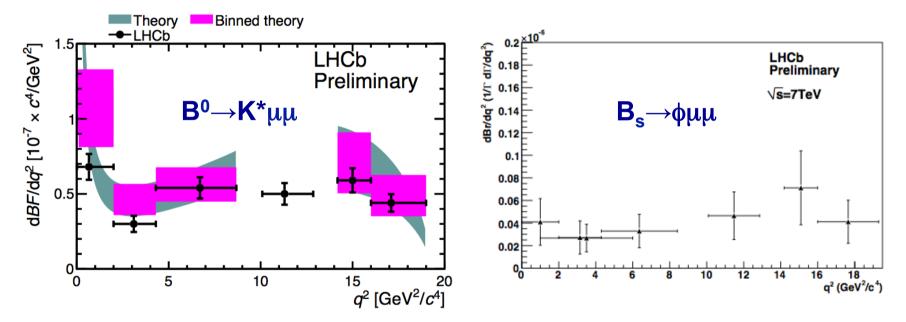
Angular Analysis Results : A_{FB}


- Data points are centred at the average q² of events in the relevant bin, as measured from the data
- Error bars include systematic uncertainties
- Theory prediction from C. Bobeth et al. [arXiv:1105.0376] (and references therein) no prediction in region between resonances
- Most precise measurements to-date consistent with the SM prediction

A_{FB} zero-crossing point


Angular Analysis Results : S₃

LHCb-CONF-2012-008

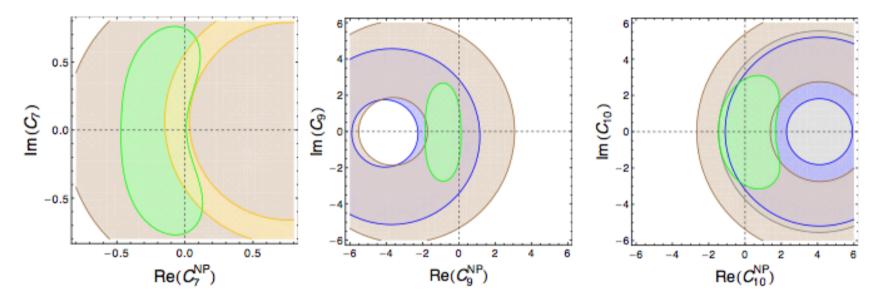

• $S_3 \propto A_T^2(1-F_L)$, the asymmetry in K^{*0} transverse polarisation

Angular Analysis Results : F_L, A_{Im}

- F_L, the fraction of K^{*0} longitudinal polarisation
- A_{IM}, a T-odd CP asymmetry
- No theory prediction for A_{Im} expected to be O(10⁻³) in SM

$B^0 \rightarrow K^* \mu \mu$ and $B_s \rightarrow \phi \mu \mu$ differential BF measurements

- Differential branching fraction is extracted by fitting the mass distribution and normalising to $B^0 \rightarrow K^* J/\psi$, $B_s \rightarrow \phi J/\psi$
- $B^0 \rightarrow K^* \mu \mu$: 900±34 signal events
- $B_s \rightarrow \phi \mu \mu$: 77±10 signal events

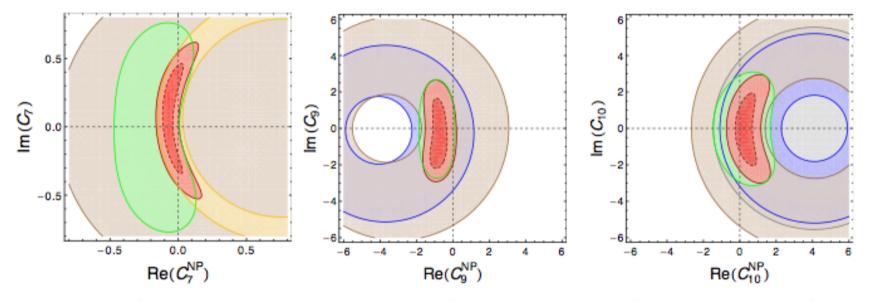

LHCb-CONF-2012-008 LHCb-CONF-2012-003

 These are the most precise measurements to-date and are consistent with SM expectations [J.Phys.G G29 (2003) 1103–1118]

Constraints on C₇, C₉, C₁₀

D. Straub, arXiv:1111.1257, JHEP 1202:106

Varying 1 Wilson coefficient at a time. $C_i = C_i^{SM} + C_i^{NP}$ *preliminary*

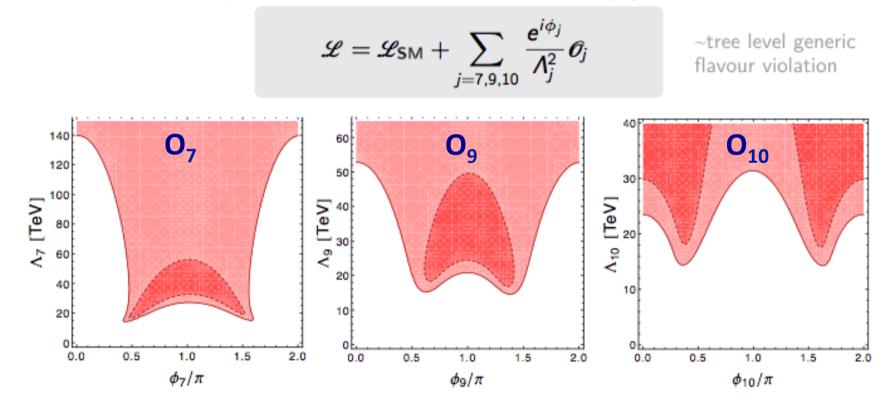


 $\mathsf{BR}(B \to X_{\mathfrak{s}} \ell^+ \ell^-) \quad \mathsf{BR}(B \to X_{\mathfrak{s}} \gamma) \quad B \to K^* \mu^+ \mu^- \quad \mathsf{BR}(B \to K \mu^+ \mu^-) \quad \mathsf{BR}(B_{\mathfrak{s}} \to \mu^+ \mu^-)$

Constraints on C₇, C₉, C₁₀

D. Straub, arXiv:1111.1257, JHEP 1202:106

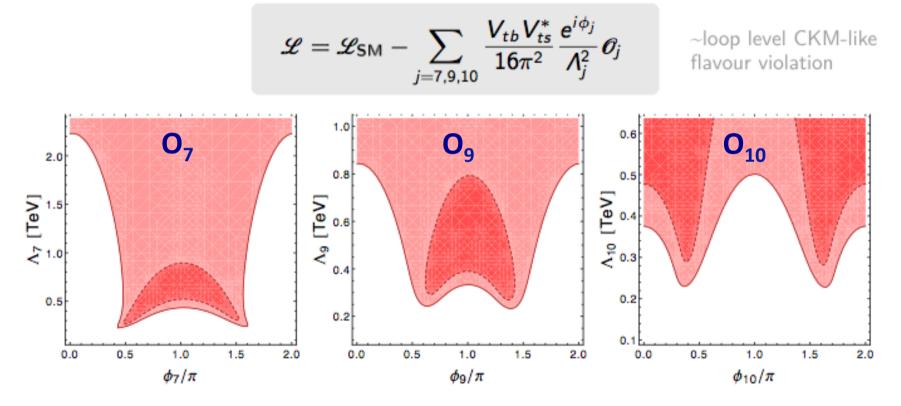
Varying 1 Wilson coefficient at a time. $C_i = C_i^{SM} + C_i^{NP}$ *preliminary*


 $\mathsf{BR}(B \to X_{\mathfrak{s}} \ell^+ \ell^-) \quad \mathsf{BR}(B \to X_{\mathfrak{s}} \gamma) \quad B \to K^* \mu^+ \mu^- \quad \mathsf{BR}(B \to K \mu^+ \mu^-) \quad \mathsf{BR}(B_{\mathfrak{s}} \to \mu^+ \mu^-)$

- Good agreement with SM expectations
- Complementarity between observables crucial to break degeneracies

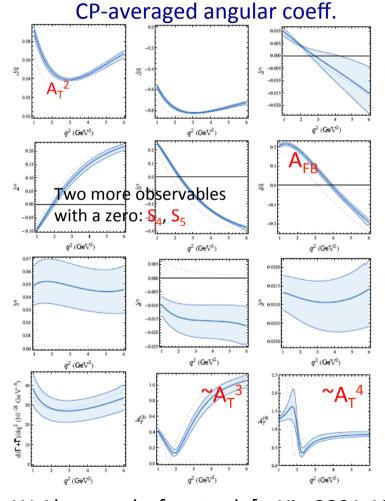
Impact – with tree level FV

D. Straub, arXiv:1111.1257, JHEP 1202:106


Results can be interpreted as bounds on the scale of new physics:

Impact – with loop CKM-like FV

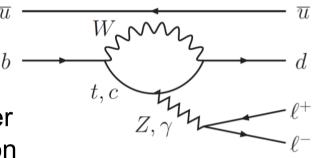
D. Straub, arXiv:1111.1257, JHEP 1202:106


Results can be interpreted as bounds on the scale of new physics:

- Bounds are weaker in the presence of CP violation beyond the CKM
- Reason: only CP-averaged observables
- Measurement of CP asymmetries would be welcome

$B^0 \rightarrow K^* \mu \mu - Outlook$

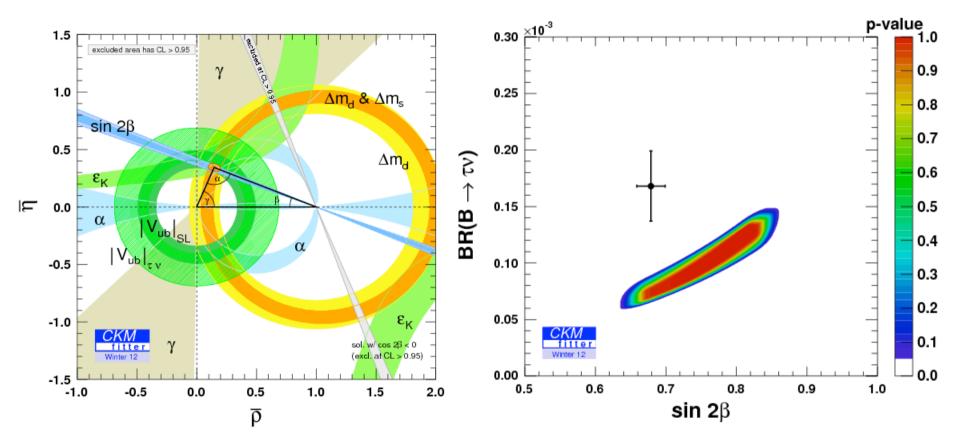
- Measurement of B⁰→K^{*}µµ CP asymmetry in progress
- More data will enable a full angular fit to extract complete information from B⁰→K*µµ decays
 - \rightarrow host of theoretically well calculable observables
- Angular analysis of B⁺→K⁺µµ decays also in progress



W.Altmannshofer et. al. [arXiv:0801.1214]

The search for $B^+ \rightarrow \pi^+ \mu^+ \mu^-$

The search for $B^+ \rightarrow \pi^+ \mu^+ \mu^-$


- The $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay is a b \rightarrow d transition
- In the SM the branching fraction is ~25x smaller than the well known B⁺→K⁺µ⁺µ⁻ (b→s) transition and can be enhanced in new physics models

- SM prediction: $B(B^+ \rightarrow \pi^+ \mu^+ \mu^-) = (1.96 \pm 0.21) \times 10^{-8}$ (*)
- Previous best limit from Belle: $B(B^+ \rightarrow \pi^+ \mu^+ \mu^-) < 6.9 \times 10^{-8} (90\% \text{ CL}) (^{**})$
- While ratio CKM elements V_{ts}/V_{td} known from oscillation measurements, this decay probes V_{ts}/V_{td} in above penguin decays
- Measure branching fraction to determine coupling

(*) Hai-Zhen et al., Comm in Theo Ph 50 (2008) 696
(**) J.T. Wei et al., Phys. Rev. D78 (2008) 011101

Motivation – tension in the CKM picture

- Tension between sin 2β and Vub $|_{B\to\tau\nu}$ measurements and global fit
- Information from comparing angle to opposite side
- LHCb will improve measurement angle $\gamma \rightarrow$ alternative measurements of Vts/Vtd also of interest

$B^+ \rightarrow \pi^+ \mu^+ \mu^-$ Analysis

- Main issue: separating $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ from misidentified $B^+ \rightarrow K^+ \mu^+ \mu^-$
- e BDT to make selection: kinematic properties of the B candidate and daughters particle identification information handled separately 400 Use BDT to make selection: • LHCb 350 **Preliminary** 300 $B^+ \rightarrow J/\psi \pi^+$ 250 200**E** $B^+ \rightarrow J/\psi K^+$ 150 - $B^+ \rightarrow (J/\psi, \Psi(2S))K^+$ vetoes 100 peaking backgrounds negligible
- Fitting
 - Use $B^+ \rightarrow J/\psi K^+$ events to define signal shape and, under $\pi^+\mu^+\mu^-$ hypothesis, shape of mis-identified events
 - Components for partial reconstructed B decays and combinatorial bkgrd

4900

5000

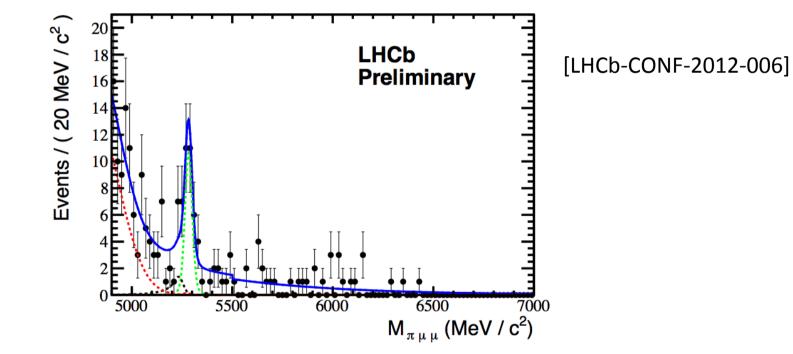
5200

5100

5300

5400

5500 5600


 $M_{\pi\mu\mu}$ (MeV / c²)

- Validate by separating $B^+ \rightarrow J/\psi K^+$ and $B^+ \rightarrow J/\psi \pi^+$ decays
- Normalise branching fraction using $B^+ \rightarrow J/\psi K^+$

5700

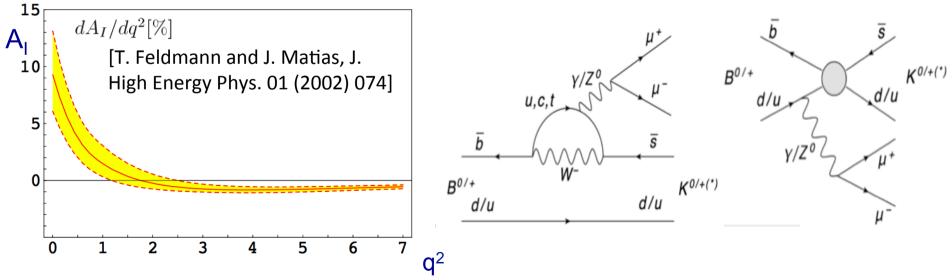
Result

- With 1.0 fb⁻¹ LHCb finds $25.3^{+6.7}_{-6.4}$ B⁺ $\rightarrow \pi^+\mu^+\mu^-$ signal events
 - 5.2 σ excess above background

- $B(B^+ \rightarrow \pi^+ \mu^+ \mu^-) = (2.4 \pm 0.6(stat) \pm 0.2(syst)) \times 10^{-8}$, within 1σ of SM pred.
- The rarest B decay ever observed

Isospin Asymmetry in $B \rightarrow K^{(*)} \mu^+ \mu^-$

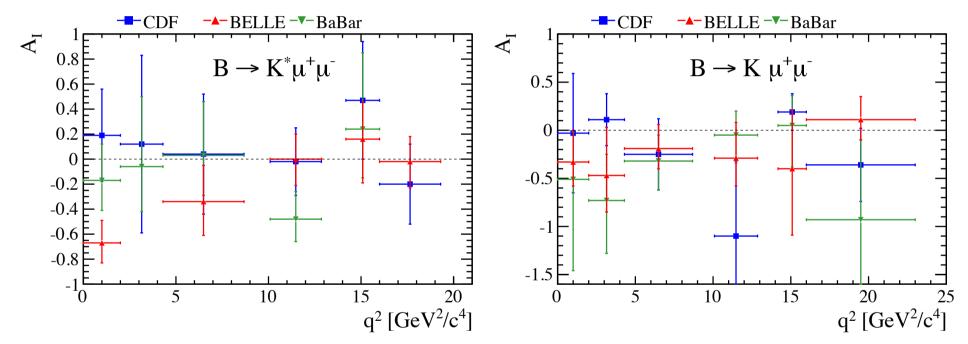
- Results shown in public for first time
- Will shortly be available in LHCb paper : LHCb-PAPER-2012-011


Isospin Asymmetry

• The isospin asymmetry of $B \rightarrow K^{(*)}\mu^+\mu^-$, A_I is defined as:

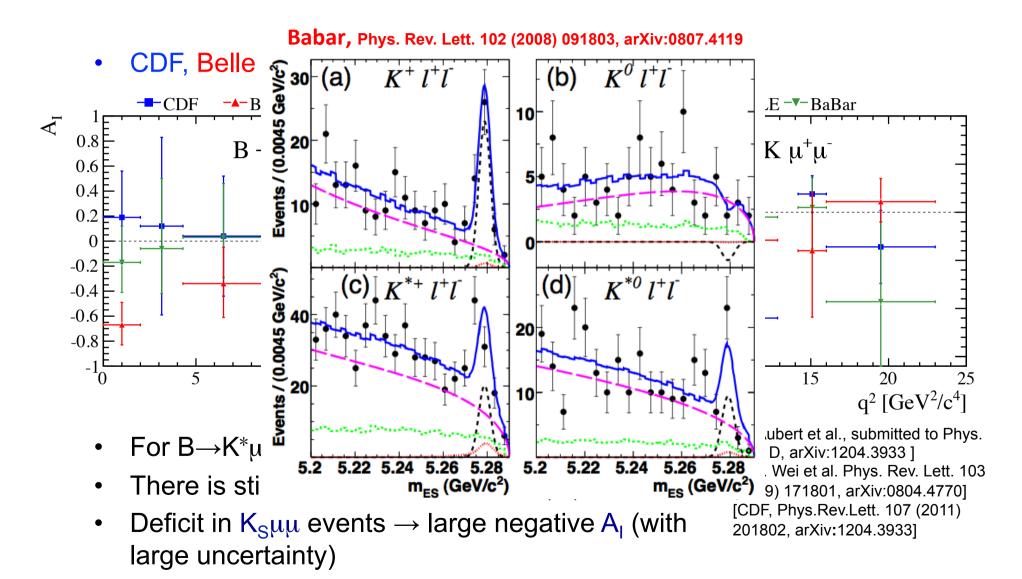
$$A_{I} = \frac{\mathcal{B}(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}) - \frac{\tau_{0}}{\tau_{+}} \mathcal{B}(B^{\pm} \to K^{(*)\pm} \mu^{+} \mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}) + \frac{\tau_{0}}{\tau_{+}} \mathcal{B}(B^{\pm} \to K^{(*)\pm} \mu^{+} \mu^{-})}$$

can be more precisely predicted than the branching fractions


• A_{I} is expected to be very close to zero in the SM e.g. for $B \rightarrow K^{*}\mu^{+}\mu^{-}$:

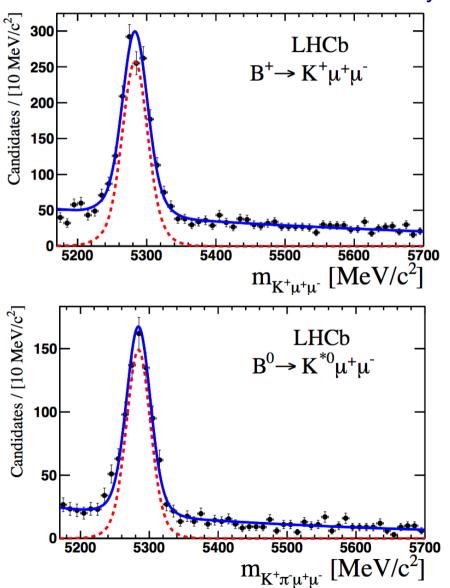
• Asymmetry has been measured in $K^*\gamma$ decay modes, agrees with SM

Experimental Status


• CDF, Belle and Babar have all measured A_I :

- For $B \rightarrow K^* \mu^+ \mu^-$ results are consistent with the SM
- There is still some tension for $B \rightarrow K \mu^+ \mu^-$
- Deficit in $K_{S}\mu\mu$ events \rightarrow large negative A_{I} (with large uncertainty)

[B. Aubert et al., submitted to Phys. Rev. D, arXiv:1204.3933] [J.-T. Wei et al. Phys. Rev. Lett. 103 (2009) 171801, arXiv:0804.4770] [CDF, Phys.Rev.Lett. 107 (2011) 201802, arXiv:1204.3933]


Experimental Status

LHCb Analysis

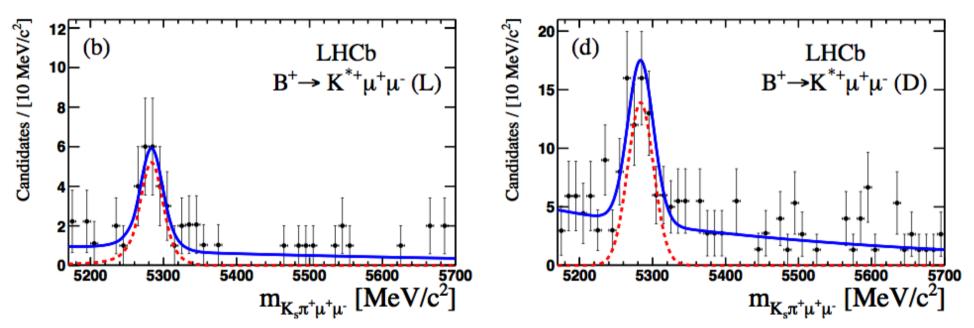
Preliminary

- Measure differential branching fraction of four decay modes:
 - $B^+ \rightarrow (K^{*+} \rightarrow K_S^{0} \pi^+) \mu^+ \mu^-$
 - $B^0 \rightarrow (K^0 \rightarrow K_S^0) \mu^+ \mu^-$
 - $\quad B^0 {\rightarrow} \ K^{*0} \mu^+ \mu^-$
 - $\quad B^+ {\rightarrow} \ K^+ \mu^+ \mu^-$
- K_{s}^{0} are reconstructed through the $K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$ decay mode
- The K^{*+} and K_S⁰ channels have a lower reconstruction efficiency and a lower visible branching fraction
- The K^{*0} and K⁺ channels much more copious

LHCb Analysis

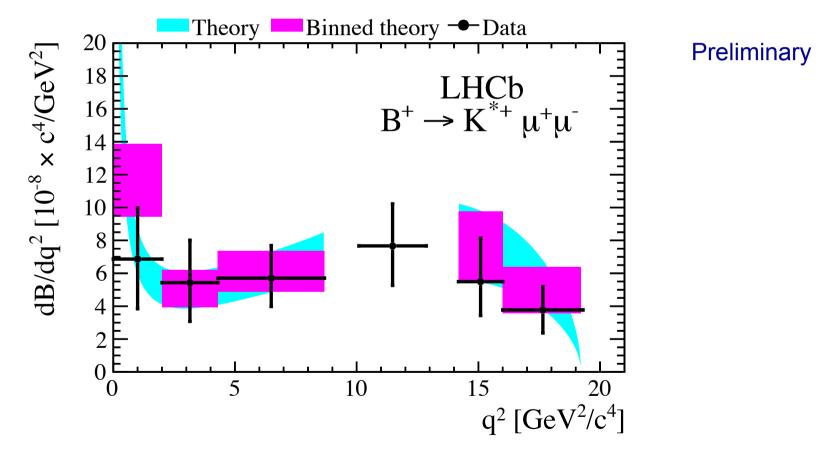
- The channels involving a K_S⁰ are split into two categories based on how the K_S⁰ is reconstructed – "long" (L) and "downstream" (D)
 - L-events have less background use cut-based selection
 - D-events use BDT selection
 - Insofar as possible, use similar selections for K⁺ channels
- Correction for detector and selection effects again made with simulation (verified to reproduce the data)
- B→K^(*)(J/ψ→μ⁺μ⁻) decays are used to normalise branching fraction for each decay to cancel systematic uncertainties
- Determine A_I by combining the likelihoods of the relevant decay modes

 $B(B^+ \rightarrow K^{*+}\mu^+\mu^-)$


• LHCb measurement: $B(B^+ \rightarrow K^{*+}\mu^+$

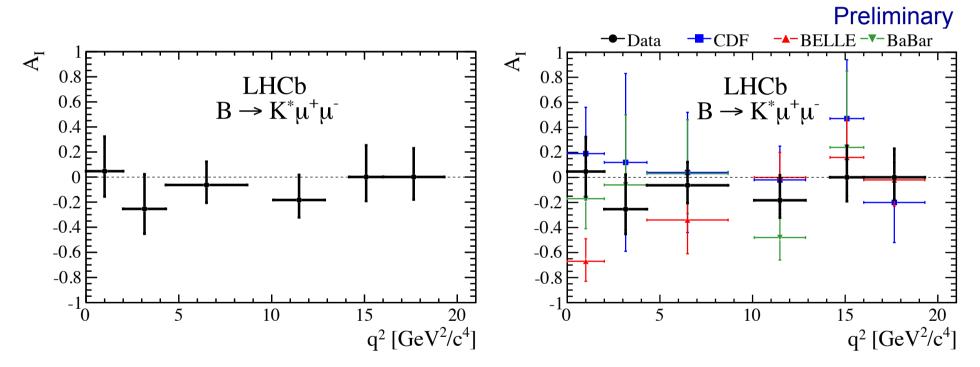
Cf. PDG

•


 $B(B^+ \to K^{*+}\mu^+\mu^-) = (1.16 \pm 0.19) \times 10^{-6}$ B(B⁺ $\to K^{*+}\mu^+\mu^-) = (1.16 \pm 0.30) \times 10^{-6}$

Preliminary

 $dBF/q^2(B^+ \rightarrow K^{*+}\mu^+\mu^-)$


• Measurements are consistent with the SM :

Theory prediction from [C. Bobeth, G. Hiller, and D. van Dyk, JHEP (2011) 067, arXiv:1105.0376]

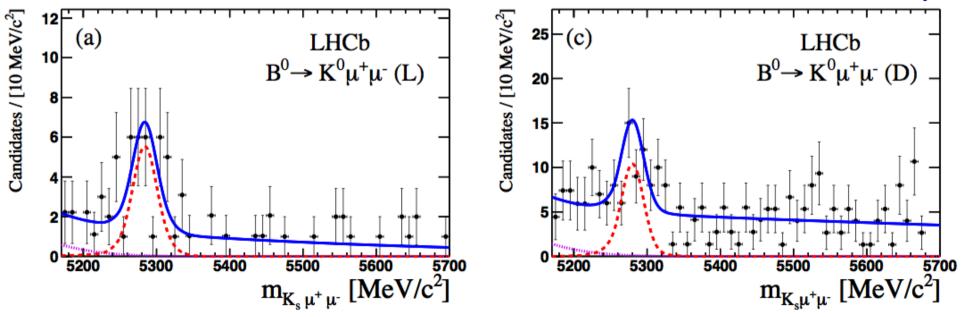
A_I for $B \rightarrow K^* \mu^+ \mu^-$

- A_I for $B \rightarrow K^* \mu^+ \mu^-$ is consistent with zero, as predicted by the SM
- LHCb results in agreement with previous measurements

 $B(B^0 \rightarrow K^0 \mu^+ \mu^-)$

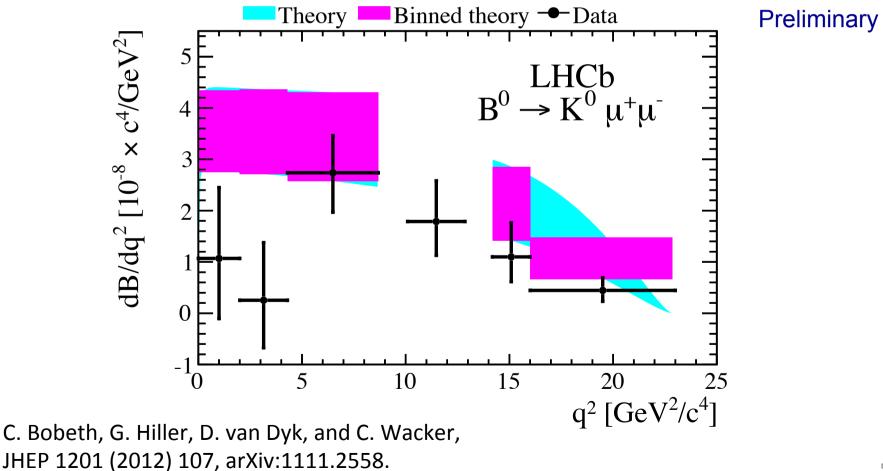
- Assuming a factor two for $K^0 \rightarrow K^0_s$ and accounting for $K_s^0 \rightarrow \pi^+ \pi^$ branching fraction :
- LHCb measurement: $B(B^0 \rightarrow K^0 \mu^+ \mu^-) = (3.1^{+0.7})$
- cf PDG

$$B(B^{0} \rightarrow K^{0}\mu^{+}\mu^{-}) = (3.1^{+0.01} - 0.6) \times 10^{-7}$$

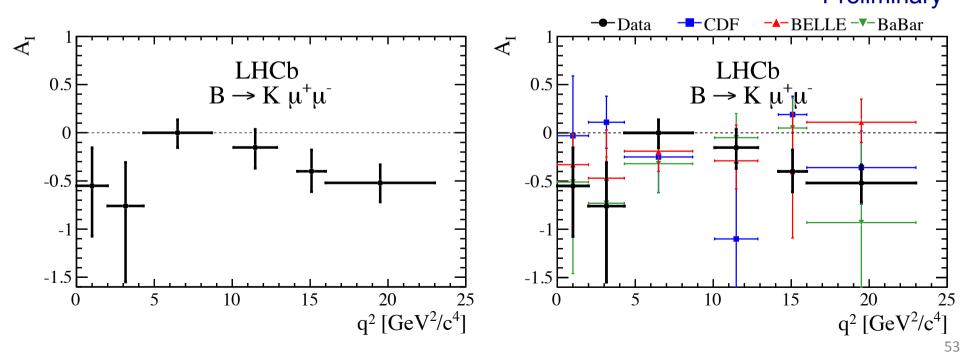

$$B(B^{0} \rightarrow K^{0}\mu^{+}\mu^{-}) = (4.5 \pm 1.1) \times 10^{-7}$$

$$B(B^{0} \rightarrow K^{0}l^{+}l^{-}) = (3.1^{+0.8} - 0.7) \times 10^{-7}$$

• 5.7σ excess above background

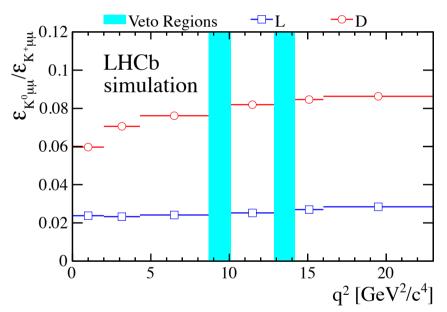

Preliminary

1 - 7


 $dBF/q^2(B^0 \rightarrow K^0 \mu^+ \mu^-)$

• There is a deficit of $B^0 \rightarrow K^0 \mu^+ \mu^-$ signal in the q^2 regions which are not adjacent to the charmonium resonances

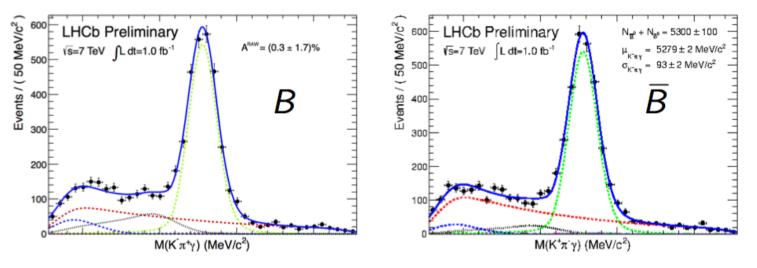
$A_I \text{ for } B \longrightarrow K \mu^+ \mu^-$


- As a result, A_I for $B \rightarrow K \mu^+ \mu^-$ tends to sit below the SM prediction
- Results agree with previous measurements but nearly all measurements of A_I are negative
- Ignoring the small correlation of (syst) errors between each q² bin, the significance of the deviation from zero integrated across q² is 4.4σ (from LHCb alone)

Cross checks

- Hard to imagine some expt'al issue that effects the K⁰ decays but not the K^{*+}(→K⁰π⁺)
- Normalise BF to J/ψK⁺ and J/ψK⁰

 is only the shape of the relative efficiency that the measurement is sensitive to
 - Most significant effect seen in A_I is at high q^2 where efficiency is very close to that in J/ ψ regions
 - At low q², harder K_S⁰, longer flight distance, decay beyond tracking stations and are not reconstructed
 - essentially geometry


 $\mathsf{A}_{\mathsf{CP}}(\mathsf{B}^0 {\rightarrow} \mathsf{K}^* \gamma)$

 $A_{CP}(B^0 \rightarrow K^* \gamma)$

- CLEO's 10 events in 1993 \rightarrow LHCb's 5300 in 2011
 - Can expect another two orders of magnitude increase in the next decade with LHCb upgrade
- Probe CP violation in $b \rightarrow s\gamma$ via the exclusive mode $B^0 \rightarrow K^*\gamma$
 - SM prediction: $A_{CP} = -0.006 \pm 0.004$

(Previous best measurement: A_{CP} = -0.016 ± 0.022 ± 0.007 [BaBar])

- Fit for raw asymmetry
 - Subtract B^0 production asymmetry, $K\pi$ detection asymmetry
- $A_{CP} (B^0 \rightarrow K^* \gamma) = -0.008 \pm 0.017 (stat) \pm 0.009 (syst)$

Conclusions

- World's most precise measurements of angular observables and differential branching fraction in B⁰→K^{*}µ⁺µ⁻ decays
 - Scale of any NP contributions O(10TeV) or NP has CKM like flavour suppression
- First observation of $B^+ \rightarrow \pi^+ \mu \mu$, consistent with SM expectation
- Isospin asymmetry A_I [LHCb-PAPER-2012-011 to be submitted to JHEP]
 - $B \rightarrow K^* \mu^+ \mu^-$, A_I results consistent with zero, as expected in SM
 - − $B \rightarrow K\mu^+\mu^-$, A_1 results sit below the SM expectation in the q^2 region below 4.3 GeV²/c⁴ and above 16 GeV²/c⁴
- A_{CP} in $B^0 \rightarrow K^* \gamma$ in good agreement with SM
- LHCb will improve these measurements and has many more measurements in prospect with the 2012 data

Backup

$q^2~({ m GeV}^2/c^4)~{ m range}$	Signal Yield	Background Yield
$4m_{\mu}^2 < q^2 < 2.00$	162.4 ± 14.2	27.7 ± 3.8
$2.00 < q^2 < 4.30$	71.4 ± 10.7	37.1 ± 4.1
$4.30 < q^2 < 8.68$	270.5 ± 18.8	58.8 ± 5.5
$10.09 < q^2 < 12.90$	167.0 ± 14.9	41.7 ± 4.5
$14.18 < q^2 < 16.00$	113.0 ± 11.7	17.1 ± 3.0
$16.00 < q^2 < 19.00$	115.0 ± 12.4	23.9 ± 3.6
$1.00 < q^2 < 6.00$	195.2 ± 16.9	75.8 ± 6.0
$4m_{\mu}^2 < q^2 < 19.00$	900.0 ± 34.4	206.2 ± 10.3

Table 1: The signal and background yields resulting from a fit to the $K^+\pi^-\mu^+\mu^-$ invariant mass distributions of $B^0 \to K^{*0}\mu^+\mu^-$ candidates in the six q^2 -bins used in the analysis, the theoretically 'favoured' $1 < q^2 < 6 \,\text{GeV}^2/c^4$ range and in the full q^2 -range.

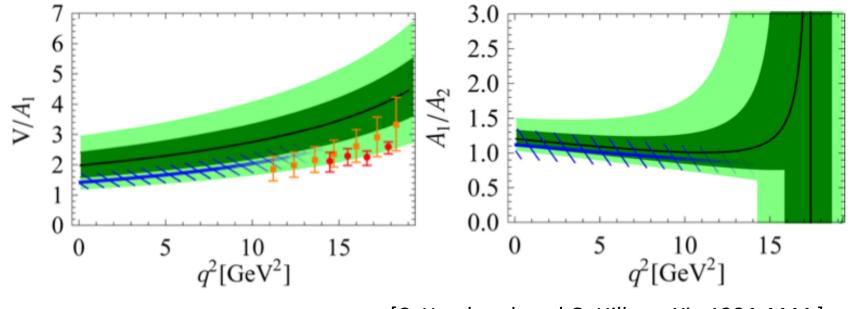
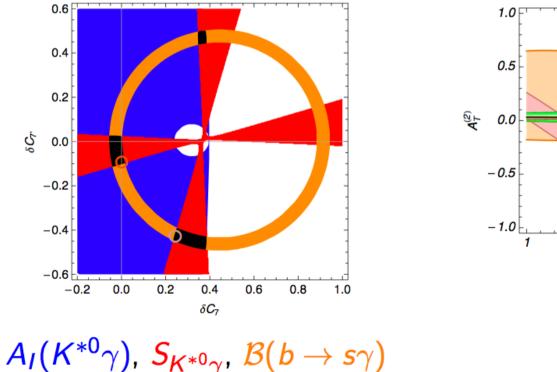

q^2 range	dBF/dq^2	$A_{ m FB}$	$F_{ m L}$	$A_{ m Im}$	$2S_3$
$({ m GeV}^2/c^4)$	$(imes 10^{-7}{ m GeV}^{-2}c^4)$				
$0.05 < q^2 < 2.00$	$0.68 \pm 0.07 \pm 0.05$	$0.00\substack{+0.08+0.01\\-0.07-0.01}$	$0.31\substack{+0.07+0.03\\-0.06-0.03}$	$0.06\substack{+0.11+0.00\\-0.10-0.03}$	$0.02\substack{+0.20+0.00\\-0.21-0.03}$
$2.00 < q^2 < 4.30$	$0.30 \pm 0.05 \pm 0.02$	$-0.20\substack{+0.08+0.01\\-0.07-0.03}$	$0.74\substack{+0.09+0.02\\-0.08-0.04}$	$-0.02\substack{+0.10+0.05\\-0.06-0.01}$	$-0.05\substack{+0.18+0.05\\-0.12-0.01}$
$4.30 < q^2 < 8.68$	$0.54 \pm 0.05 \pm 0.05$	$0.16\substack{+0.05+0.01\\-0.05-0.01}$	$0.57\substack{+0.05+0.04\\-0.05-0.03}$	$0.02\substack{+0.07+0.01\\-0.07-0.01}$	$0.18\substack{+0.13+0.01\\-0.13-0.01}$
$10.09 < q^2 < 12.89$	$0.50 \pm 0.06 \pm 0.04$	$0.27\substack{+0.06+0.02\\-0.06-0.01}$	$0.49\substack{+0.06+0.03\\-0.07-0.03}$	$-0.01\substack{+0.11+0.02\\-0.11-0.03}$	$-0.22\substack{+0.20+0.02\\-0.17-0.03}$
$14.18 < q^2 < 16.00$	$0.59 \pm 0.07 \pm 0.04$	$0.49\substack{+0.04+0.02\\-0.06-0.05}$	$0.35\substack{+0.07+0.07\\-0.06-0.02}$	$-0.01\substack{+0.08+0.04\\-0.07-0.02}$	$0.04\substack{+0.15+0.04\\-0.19-0.02}$
$16.00 < q^2 < 19.00$	$0.44 \pm 0.05 \pm 0.03$	$0.30\substack{+0.07+0.04\\-0.07-0.01}$	$0.37\substack{+0.06+0.03\\-0.07-0.04}$	$0.06\substack{+0.09+0.03\\-0.10-0.05}$	$-0.47\substack{+0.21+0.03\\-0.10-0.05}$
$1.00 < q^2 < 6.00$	$0.42 \pm 0.04 \pm 0.04$	$-0.18\substack{+0.06+0.01\\-0.06-0.02}$	$0.66\substack{+0.06+0.04\\-0.06-0.03}$	$0.07\substack{+0.07+0.02\\-0.07-0.01}$	$0.10\substack{+0.15+0.02\\-0.16-0.01}$

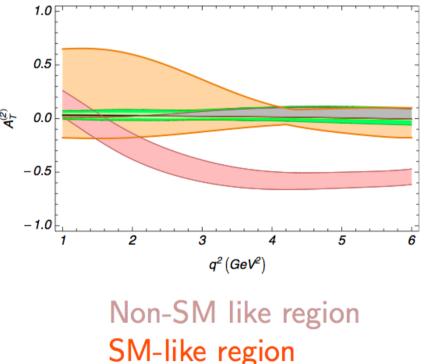
Table 2: Central values for, and statistical and systematic uncertainties on, the differential branching fraction, $A_{\rm FB}$, $F_{\rm L}$, $A_{\rm Im}$ and S_3 in bins of q^2 . The first uncertainty is statistical and the second systematic.

Background	Background Level (%)	Signal Loss (%)
$B^0 \rightarrow K^{*0} \mu^+ \mu^- \text{ (with } K \leftrightarrow \pi\text{)}$	0.85 ± 0.02	0.11
$B^0 \to K^{*0} J/\psi \text{ (with } \pi \leftrightarrow \mu)$	0.27 ± 0.08	0.05
$B^0 \to K^{*0} J/\psi \text{ (with } K \leftrightarrow \mu)$	0.00 ± 0.00	0.03
$B^0_s ightarrow \phi \mu^+ \mu^-$	1.23 ± 0.50	0.32
$B^+ \rightarrow K^+ \mu^+ \mu^-$	0.14 ± 0.03	-
Total	2.49 ± 0.51	0.52

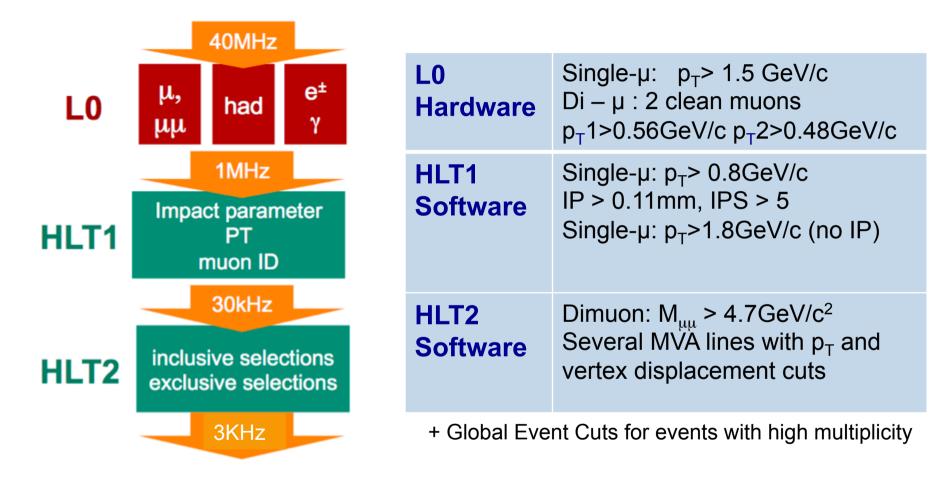
Theoretical control of form factors

- Recent paper uses experimental results to make a fit to the form factor ratios V/A₁ and A₁/A₂ green bands show the 1 and 2σ contours
- Blue band shows form factor ratio extracted from light cone sum rules
- Red and orange points show ratio extracted from lattice calculations

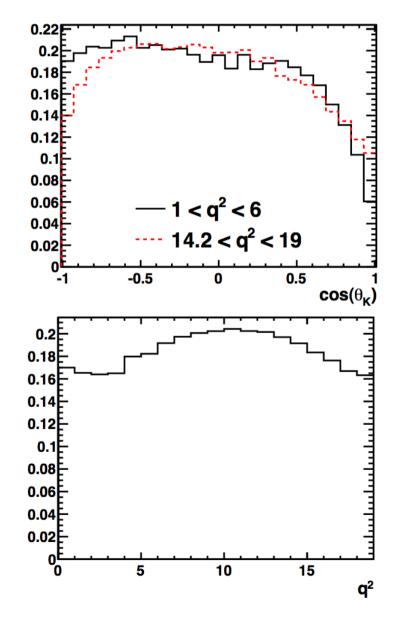


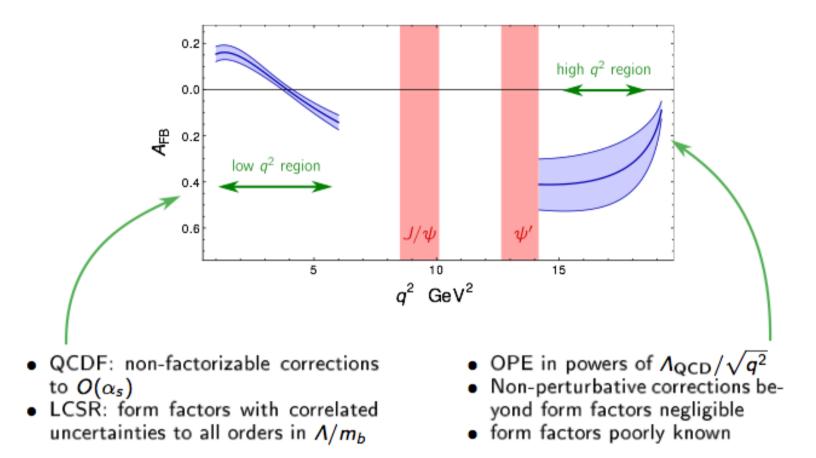

[C. Hambrock and G. Hiller arXiv:1204.4444] 61

The interest in A_T^2


- C₇ and C₇' are constrained by $b \rightarrow s\gamma$ processes. Even in the SM-like allowed region can still have large sensitivity to C₇' through A_T²
- S_3 is related to A_T^2 through $S_3 = 1/2(1-F_L)A_T^2$

[S. Descotes-Genon et. al., arXiv:1104.3342]

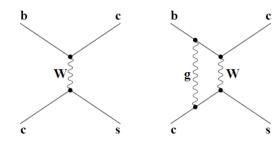

Muon Triggers


- ~1 kHz given to the muon lines
- p_T cuts on muon lines kept very low \rightarrow trigger efficiency very high

Acceptance Correction

- Correct angular and q² distributions for the effect of the detector and selection
 - μ p>3GeV/c \rightarrow effect on θ_{I}
 - IP forward-going hadrons \rightarrow effect on θ_{K}
- Use a binned acceptance correction derived from LHCb simulation
- Simulation quality verified with range of control channels (B0→K*J/ψ, J/ψ→μμ, D*→D⁰(Kπ)π)
 - Tracking efficiency
 - Hadron (mis-)identification probabilities
 - Muon (mis-)identification
 - Overall momentum and η distributions

$B \rightarrow K^* \ell^+ \ell^-$: low vs. high q^2

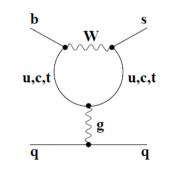

[Beneke et al. (2001, 2004); Ball, Zwicky (2004); Altmannshofer et al. (2008); Khodjamirian et al. (2010)] [Grinstein, Pirjol (2004); Bharucha et al. (2008); Bobeth et al. (2010); Beylich et al. (2011)]

Operators (1)

- Operators
 - Current-current operators [(V-A)]

$$Q_1 = (\bar{b}_{\alpha} \gamma_{\mu} P_L q_{\beta}) (\bar{q}_{\beta}' \gamma^{\mu} P_L q_{\alpha}''),$$

$$Q_2 = (\bar{b} \gamma_{\mu} P_L q) (\bar{q}' \gamma^{\mu} P_L q'').$$


- Gluonic penguin operators [(V-A) and (V+A)]

$$Q_{3} = (\bar{b}\gamma_{\mu}P_{L}q)\sum_{q'}(\bar{q}'\gamma^{\mu}P_{L}q'),$$

$$Q_{4} = (\bar{b}_{\alpha}\gamma_{\mu}P_{L}q_{\beta})\sum_{q'}(\bar{q}'_{\beta}\gamma^{\mu}P_{L}q'_{\alpha}),$$

$$Q_{5} = (\bar{b}\gamma_{\mu}P_{L}q)\sum_{q'}(\bar{q}'\gamma^{\mu}P_{R}q'),$$

$$Q_{6} = (\bar{b}_{\alpha}\gamma_{\mu}P_{L}q_{\beta})\sum_{q'}(\bar{q}'_{\beta}\gamma^{\mu}P_{R}q'_{\alpha});$$

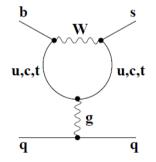
Operators (2)

- Operators
 - Current-current operators [(V-A)]

$$Q_1 = (\bar{b}_{\alpha} \gamma_{\mu} P_L q_{\beta}) (\bar{q}_{\beta}' \gamma^{\mu} P_L q_{\alpha}''),$$

$$Q_2 = (\bar{b} \gamma_{\mu} P_L q) (\bar{q}' \gamma^{\mu} P_L q'').$$

- Gluonic penguin operators [(V-A) and (V+A)]


$$Q_{3} = (\bar{b}\gamma_{\mu}P_{L}q)\sum_{q'}(\bar{q}'\gamma^{\mu}P_{L}q'),$$

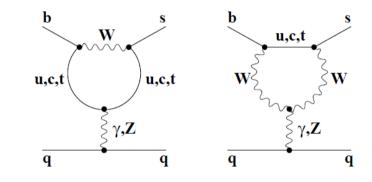
$$Q_{4} = (\bar{b}_{\alpha}\gamma_{\mu}P_{L}q_{\beta})\sum_{q'}(\bar{q}'_{\beta}\gamma^{\mu}P_{L}q'_{\alpha}),$$

$$Q_{5} = (\bar{b}\gamma_{\mu}P_{L}q)\sum_{q'}(\bar{q}'\gamma^{\mu}P_{R}q'),$$

$$Q_{6} = (\bar{b}_{\alpha}\gamma_{\mu}P_{L}q_{\beta})\sum_{q'}(\bar{q}'_{\beta}\gamma^{\mu}P_{R}q'_{\alpha});$$

 $\begin{array}{rcl} Q_2(\bar{b} \rightarrow \bar{c}c\bar{s}) &=& (\bar{b}\gamma_{\mu}P_Lc)(c\gamma^{\mu}P_L\bar{s}), \\ Q_2(\bar{b} \rightarrow \bar{c}c\bar{d}) &=& (\bar{b}\gamma_{\mu}P_Lc)(c\gamma^{\mu}P_L\bar{d}), \\ Q_2(\bar{b} \rightarrow \bar{c}u\bar{s}) &=& (\bar{b}\gamma_{\mu}P_Lc)(u\gamma^{\mu}P_L\bar{s}), \\ Q_2(\bar{b} \rightarrow \bar{c}u\bar{d}) &=& (\bar{b}\gamma_{\mu}P_Lc)(u\gamma^{\mu}P_L\bar{d}), \\ Q_2(\bar{b} \rightarrow \bar{u}c\bar{s}) &=& (\bar{b}\gamma_{\mu}P_Lu)(c\gamma^{\mu}P_L\bar{s}), \\ Q_2(\bar{b} \rightarrow \bar{u}c\bar{d}) &=& (\bar{b}\gamma_{\mu}P_Lu)(c\gamma^{\mu}P_L\bar{d}), \\ Q_2(\bar{b} \rightarrow \bar{u}u\bar{s}) &=& (\bar{b}\gamma_{\mu}P_Lu)(u\gamma^{\mu}P_L\bar{s}), \\ Q_2(\bar{b} \rightarrow \bar{u}u\bar{d}) &=& (\bar{b}\gamma_{\mu}P_Lu)(u\gamma^{\mu}P_L\bar{d}). \end{array}$

Operators (3)

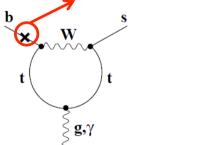

- Electroweak penguin operators

$$Q_{7} = \frac{3}{2} (\bar{b}\gamma_{\mu} P_{L}q) \sum_{q'} e_{q'} (\bar{q}'\gamma^{\mu} P_{R}q'),$$

$$Q_{8} = \frac{3}{2} (\bar{b}_{\alpha}\gamma_{\mu} P_{L}q_{\beta}) \sum_{q'} e_{q'} (\bar{q}'_{\beta}\gamma^{\mu} P_{R}q'_{\alpha}),$$

$$Q_{9} = \frac{3}{2} (\bar{b}\gamma_{\mu} P_{L}q) \sum_{q'} e_{q'} (\bar{q}'\gamma^{\mu} P_{L}q'),$$

$$Q_{10} = \frac{3}{2} (\bar{b}_{\alpha}\gamma_{\mu} P_{L}q_{\beta}) \sum_{q'} e_{q'} (\bar{q}'_{\beta}\gamma^{\mu} P_{L}q'_{\alpha});$$

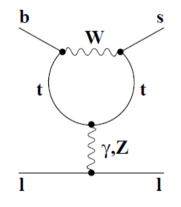


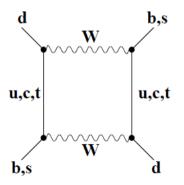
Magnetic penguin operators

$$Q_{7\gamma} = \frac{e}{8\pi^2} m_b \left[\bar{b} \sigma^{\mu\nu} (1+\gamma_5) q \right] F_{\mu\nu},$$

$$Q_{8g} = \frac{g_s}{16\pi^2} m_b \left[\bar{b}_\alpha \sigma^{\mu\nu} (1+\gamma_5) T_a^{\alpha\beta} q_\beta \right] G^a_{\mu\nu};$$

Helicity flip required




Operators (4)

- Semi-leptonic penguin operators

 $Q_{9V} = (\bar{b}\gamma_{\mu}P_{L}q)(\bar{\ell}\gamma^{\mu}\ell),$ $Q_{10A} = (\bar{b}\gamma_{\mu}P_{L}q)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$ $Q_{S} = (\bar{b}\gamma_{\mu}P_{R}q)(\bar{\ell}\ell),$ $Q_{P} = (\bar{b}\gamma_{\mu}P_{R}q)(\bar{\ell}\gamma_{5}\ell),$

- Here,
 - Q_{9V} represents cases with leptons in a vector final state
 - Q_{10A} represents cases with leptons in an axial final state
- $Q_{S,P}$ only relevant for $B \rightarrow II$ decays
- Note haven't drawn out the box diagram
- Throughout, (with NP) operators could be replaced with a right-handed version Q' where instead of P_L, have P_R

