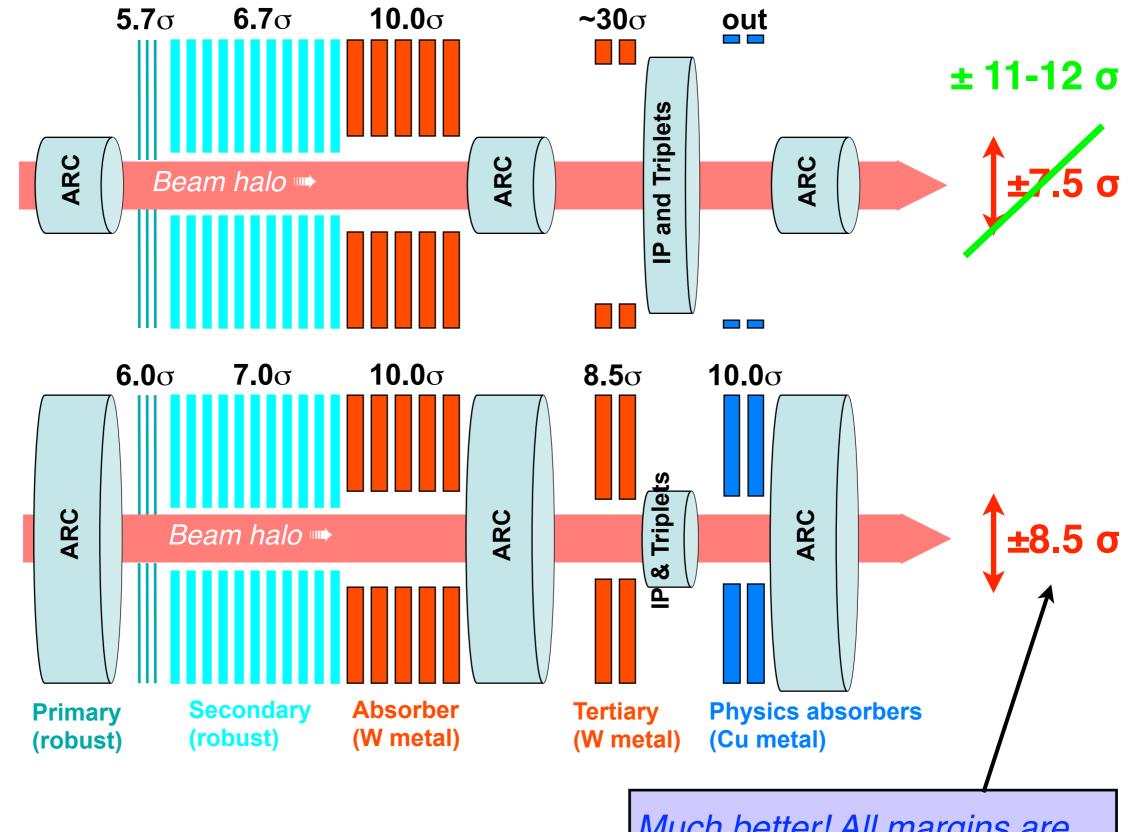
Discussion on collimator settings and β* reach

S. Redaelli, R. Assmann, R. Bruce

Outline

- **Collimation** hierarchy
- **Collimator settings**
- **M** Baseline for minimum β*
- **Conclusions**



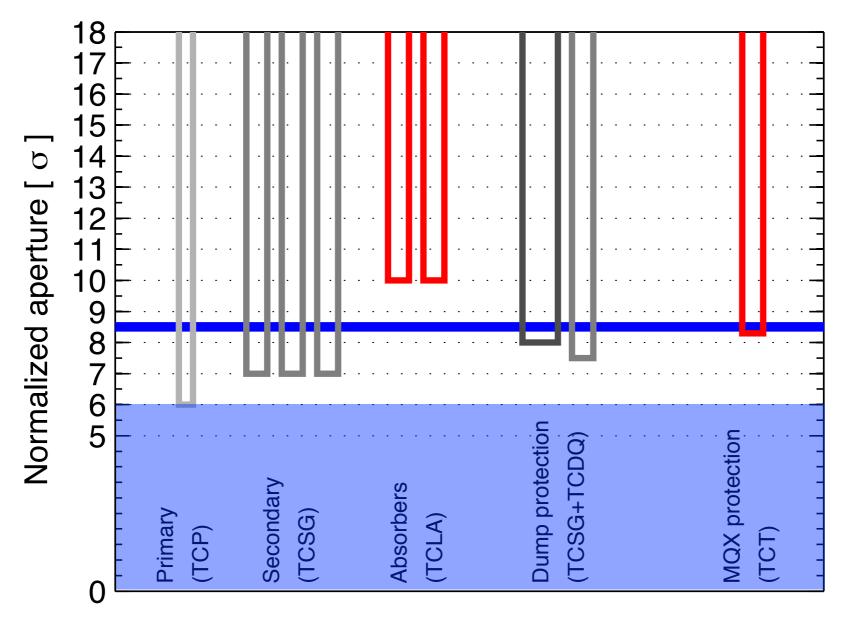
Collimator hierarchy

Much better! All margins are used to push the β* reach!

Nominal collimator settings


```
Nominal settings at 7 TeV
```

R. Assmann, Chamonix 2005


```
~ 20.0 s Active absorbers in IR3
aabs
                        Secondary collimators IR3 (H)
             18.0 s
a_{sec3}
              15.0 s
                        Primary collimators IR3 (H)
a<sub>prim3</sub>
                10.0 s Active absorbers in and IR7
a<sub>abs</sub>
                        Triplet cold aperture
aring
                       TCT protection and cleaning at triplet
\mathbf{a}_{\mathsf{prot}}
                     TCDQ (H) protection element
a<sub>prot</sub>
                         Secondary collimators IR7
a_{sec}
                        Primary collimators IR7
a_{prim}
```

- ☑ Collimator hierarchy is determined by the aperture bottleneck that must be protected, e.g. the triplet aperture (top energy, squeeze)
- Primary collimator settings and minimum retraction between collimator families are determined by operational constrains (beam losses, tolerances on orbit and optics, fill-to-fill reproducibility, ...)
 - 2012: achieved minimum gaps of about 2 mm with 130 MJ beams!

Nominal settings in practice

Triplet aperture (function of β*)

Design: 2.5 sigma retraction between TCP and triplet aperture.

TCP/TCSG/TCDQ/TCT hierarchy must fit in this range!

Reminder: This is the reason why collimation settings limit the β^* reach of the LHC!

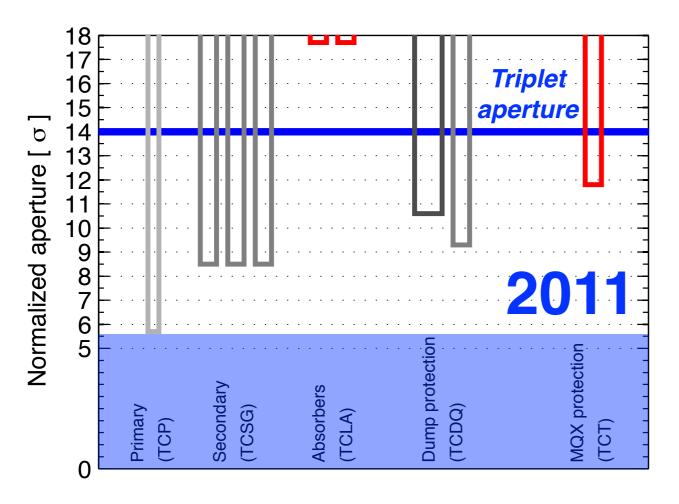
"Relaxed" and "tight" settings

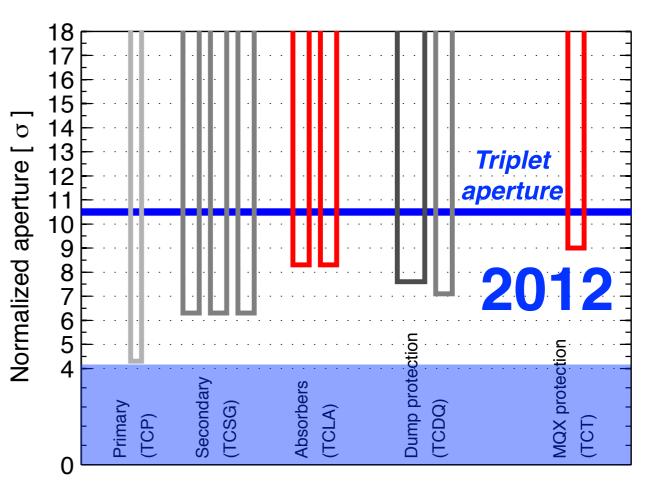
$$NSIG_{tight}^{4 \text{ TeV}} = NSIG_{7 \text{ TeV}} \times \sqrt{\frac{4 \text{ TeV}}{7 \text{ TeV}}}$$

	Relaxed 2011	Nominal	Tight at 4 TeV
TCP-IR7	5.7	6.0	4.5
TCSG-IR7	8.5	7.0	5.3
TCLA-IR7	17.7	10.0	7.6
TCTs IP1/5/8	11.8	8.3	6.3
TCSG-IR6	9.3	7.5	5.7
TCDQ-IR6	10.6	8.0	6.0

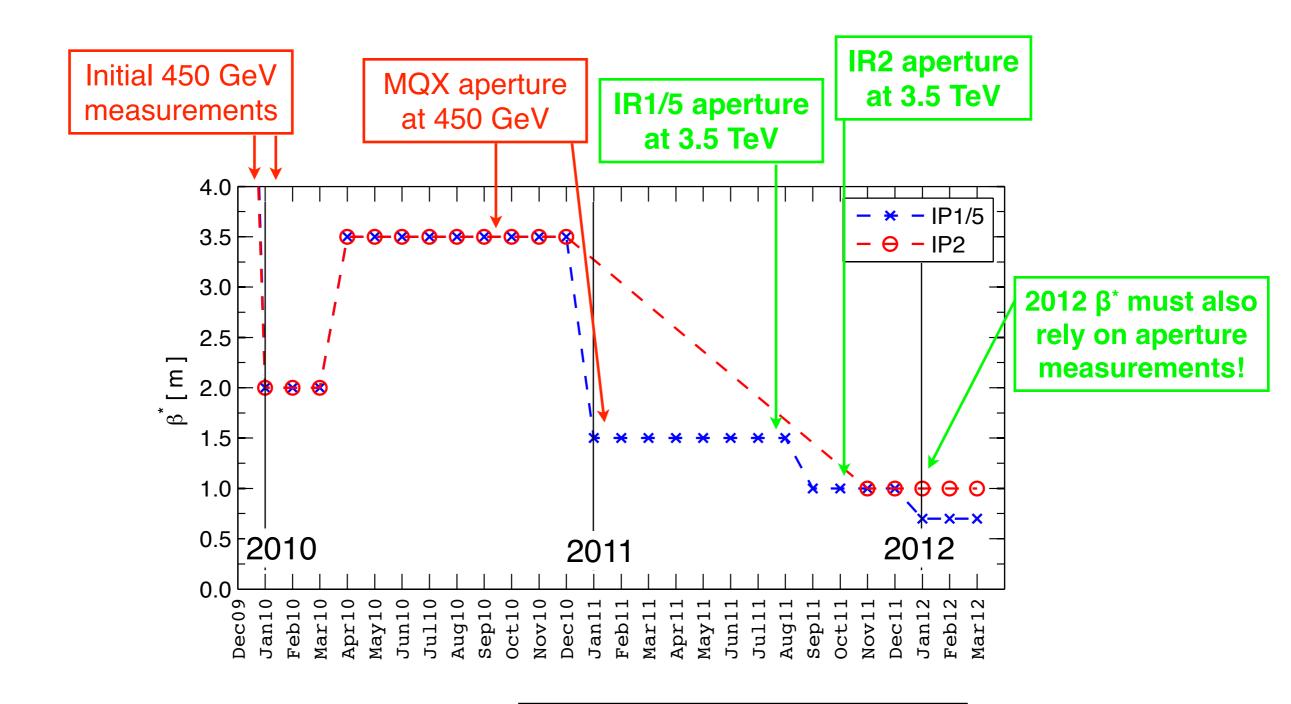
- ✓ The "relaxed" settings concept was conceived to ease the early operation (RA, Cham2006): larger retraction \Rightarrow relax orbit and beta-beating constrains
 - 2010/2011: TCSG/TCSG-6/TCT retraction from TCPs: 2.8/3.6/6.1 (nominal: 1.0/1.5/2.3)
- MD studies in 2011 on "tight" settings (7 TeV settings in [mm] scaled to 4 TeV)
 - The settings that we can achieve with <u>one single system alignment per year</u> require a larger retraction than the "tight" settings equivalent to 7 TeV.
- 2012: some "relaxed-tight" settings compatible with the 2011 experience
 - TCSG/TCSG-6/TCT retraction from TCPs: 2.0/2.8/4.7

Reminders




- The TCTs are made of Tungsten to maximize triplet protection ("sacrificial" design as they are not robust)
 - The choice to go for high-Z was taken in absence of detailed studies Experts contacted and take a conservative choice in terms of absorption Later background studies confirmed that W is okay for background!
- The IR protection has constrained the β* reach: the retraction between TCDQ and TCTs has to be chosen such as to minimize the risk to hit TCT (for a given measured orbit stability).
- The concurrency of a few <u>combined failures</u> is required to hit TCT.
 Very unlikely to hit the TCT's with more than 1 bunch.
- The simulations indicate that the TCTs are likely to survive the hit of 1 bunch (will be tested at HiRadMat this year).
- All TCTs will be replaced in LS1 to get the BPM-embedded design but we decided to keep the same material.
 - Changes of this baseline are excluded (actions possible in LS2 at the earliest)!
- What can we gain with more robust TCTs?

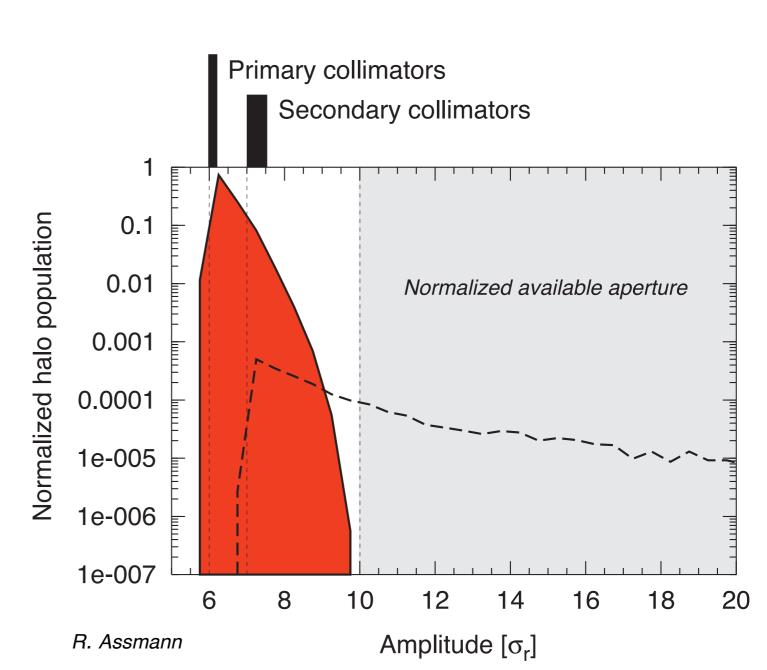
Settings in 2011 and 2012


- ☑ 2011 → 2012: (See RB's talk at the Chamonix2012)

 Maintained similar retractions (same orbit and optics tolerances) and reduced margins with respect to MQX aperture
 - TCT/MQX retraction: started conservatively with 2σ, now 1.5σ (limited by BPM)
- Crucial role of local triplet aperture measurements: set the scale for β*
 - Extrapolations from injection measurements proved to be too conservative
 - Allowed change of β^* from 1.5m to 1.0m in 2011 and **60 cm** in 2012 (tight settings)

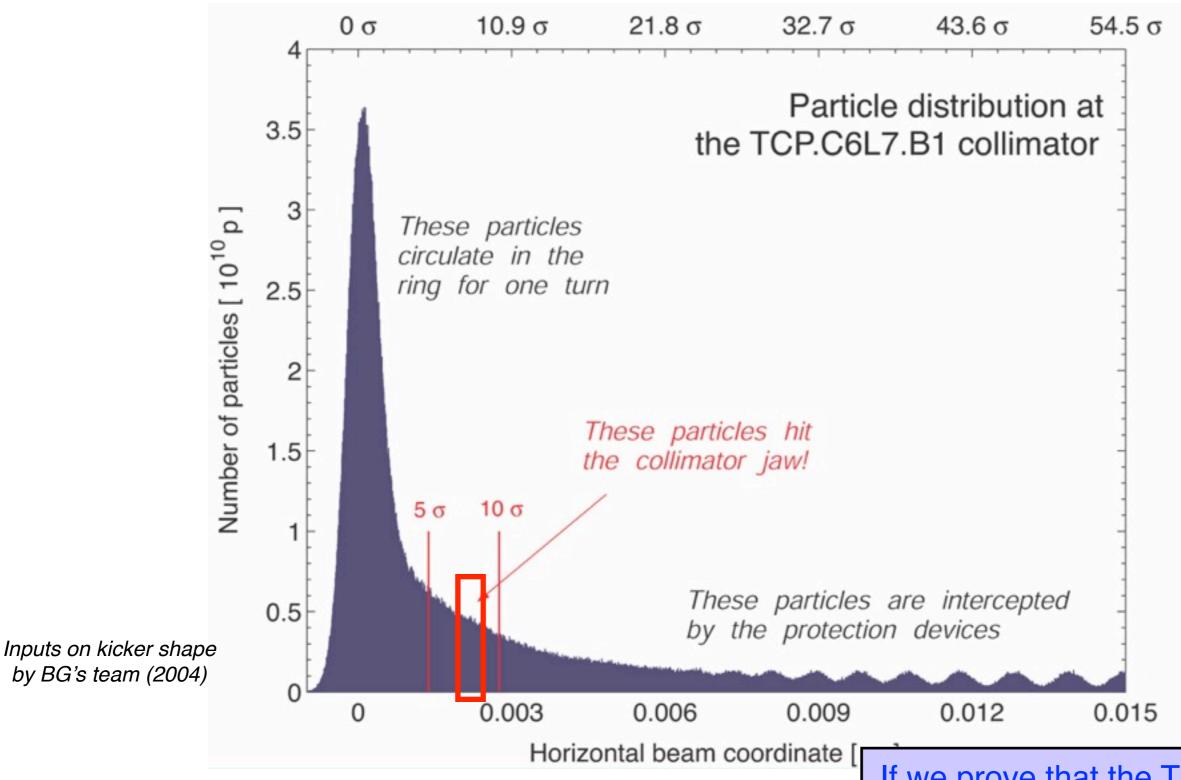
β* in IR1/5 versus time

β* reach goes together with a detailed knowledge aperture in squeezed conditions!


Can we go even tighter?

In principle yes, but there are some risks:

- Higher losses on the TCPs if they are closer to beam core
 - Unless we can scrape or we have an hollow lens!
- Higher loads on other IPs
 - Remember that we dumped several times due to losses in IP6!
- Increased impedance
- Larger background in the experiments if TCTs get closer to the TCSG aperture
- Even tighter tolerances on orbit and beta-beating
- More losses in case of an asynchronous dump


By going too tight with TCSG/ TCT settings, we risk to have troubles without real gain!

Asynchronous dump distribution

There is about 1 bunch per sigma in the regineration the TCT: realistically, about 1 bunch car

If we prove that the TCTs are safe for 1 bunch, we can consider them "robust"

Scenarios after LS1 at 6.5-7.0 TeV

Parameter	Unit	Plane	Type	Mat.	Case 1	Case 2
Primary cut IR7	[σ]	H,V,S	TCP	C	5.7	5.7
Secondary cut IR7	$[\sigma]$	H,V,S	TCSG	C	7.7	6.7
Quartiary cut IR7	$[\sigma]$	H,V	TCLA	W	9.7	9.0
Tertiary cut IR1/5	$[\sigma]$	H,V	TCT	W	10.4	9.5
Tertiary cut IR2/8	$[\sigma]$	H,V	TCT	W	12.0	12.0
Physics debris collimators	$[\sigma]$	Н	TCL	Cu	12.0	12.0
Primary protection IR6	$[\sigma]$	Н	TCSG	C	8.5	7.5
Secondary protection IR6	$[\sigma]$	H	TCDQ	C	9.0	8.0
Primary cut IR3	[σ]	Н	TCP	C	12.0	12.0
Secondary cut IR3	$[\sigma]$	H	TCSG	C	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6

☑ Case 1: essentially the same settings in mm than in 2012

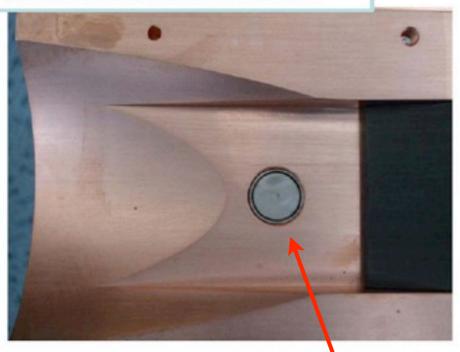
- Based on R. Bruce's work presented at Evian2011
- Case 1 is slightly tighter than 2012 settings: kept a 2 sigma retraction

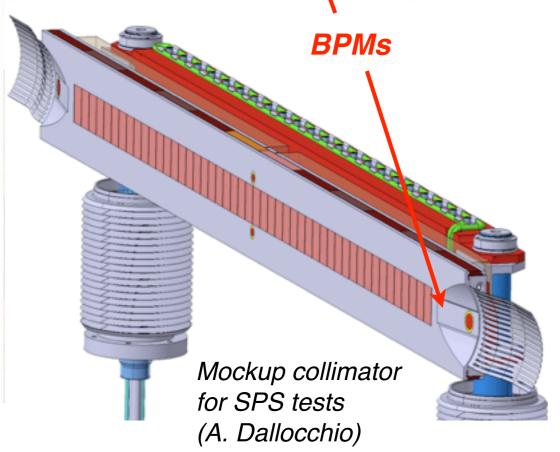
Case 2: improvement from present situation, even without BPMs

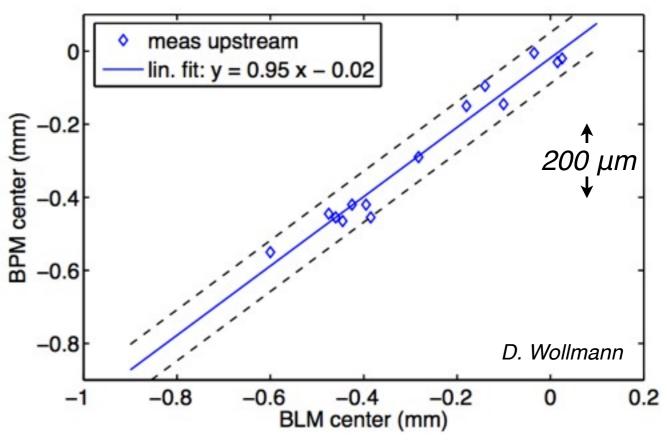
- Nominal 1 sigma retraction between TCP/TSCG
- Same retraction to TCDQ/TCTs that we have now in units sigma

We will have a further gain from the BPM-design!

- Detailed analysis ongoing (RB); PRELIMINARY: β* between 30 and 40 cm!




BPM-integrated for TCTs and TCSG-6


13

Button 1 at upstream port on D side Distance from Jaw face: 10 mm

Present (10-15min/coll) to BPM (~ten sec)

- BPM bottoms integrated in the collimator jaws to measure the local beam position.
- We will replace all 16 tertiary collimators and the 2 TCSGs in IP6 in LS1
- We can zero the fill-to-fill uncertainty on the orbit errors between TCDQ and TCTs (H).
- Can reach a β* < 40 cm after LS1!</p>
- Nominal collimator settings within reach!
- Still limited by BPM accuracy that forces ~1σ retraction between TCT and IT

Conclusions

- oxdot We believe that a β^* of **30-40 cm** is within reach after LS1
 - Details being worked out (RB) soon reviewed at a CWG on 2015 performance reach
 - Collimation upgrade work for LS1: will add 18 collimators with BPM integrated
- Pushing the "HL" era after LS1 might be possible thanks to
 - Good aperture (much better "n1" predictions), good collimation and machine stability
 - Addition of BPMs at TCTs and TCSG-IP6 that improve orbit uncertainties
 - The nominal collimation settings (TCP/TCSG/TCT=6.0/7.0/8.4) are within reach!
- Initially, there were margins to gain in the collimation hierarchy
 - Relaxed setting approach in early commissioning: conservative but safe
 - IR protection did limit the β^* reach, but every year we have gained some margin!
 - We considered options to improve this situation (robust TCTs)
- There is not much that we can gain in addition to our baseline
 - It seems unlikely to tighten hierarchy more, but we are open to suggestions.
- We have been pursuing R&D on new materials to find improvements
 - HiRadMat SOON to address the damage limit of TCTs hoping in good news!
 - Studying TCT loads for realistic failure scenarios (followup Chamonix 2011)
 - FLUKA studies to address effects on IRs from showers from TCTs
- We will be ready for possible further improvements in LS2, if needed.
 - More H collimators with BPMs in IR7. New TCT materials if W damaged for ≪ 1 bunch

2012 settings

Parameter	Unit	Plane	Туре	Set 1	Set 2	Set 3	Set 4
				Injection	Top energy	Squeezed	Collision
Energy	[GeV]	n.a.	n.a.	450	4000	4000	4000
β^* in IR1/5	[m]	n.a.	n.a.	11.0	11.0	0.6	0.6
β^* in IR2	[m]	n.a.	n.a.	10.0	10.0	3.0	3.0
β^* in IR8	[m]	n.a.	n.a.	10.0	10.0	3.0	3.0
Crossing angle IR1/5	$[\mu rad]$	n.a.	n.a.	170	145	145	145
Crossing angle IR2	$[\mu rad]$	n.a.	n.a.	170	220 (H)	220 (H)	100 (V)
Crossing angle IR8	$[\mu rad]$	n.a.	n.a.	170	90	90	90
Beam separation	[mm]	n.a.	n.a.	2.0	0.65	0.65	0.0
Primary cut IR7	$[\sigma]$	H,V,S	TCP	5.7	4.3	4.3	4.3
Secondary cut IR7	[σ]	H,V,S	TCSG	6.7	6.3	6.3	6.3
Quartiary cut IR7	$[\sigma]$	H,V	TCLA	10.0	8.3	8.3	8.3
Primary cut IR3	$[\sigma]$	Н	TCP	8.0	12.0	12.0	12.0
Secondary cut IR3	[σ]	H	TCSG	9.3	15.6	15.6	15.6
Quartiary cut IR3	$[\sigma]$	H,V	TCLA	10.0	17.6	17.6	17.6
Tertiary cut IR1/5	$[\sigma]$	H,V	TCT	13.0	26.0	9.0	9.0
Tertiary cut IR2/8	$[\sigma]$	H,V	TCT	13.0	26.0	12.0	12.0
Physics debris collimators	$[\sigma]$	H	TCL	out	out	out	10.0
Primary protection IR6	$[\sigma]$	H	TCSG	7.0	7.1	7.1	7.1
Secondary protection IR6	[σ]	H	TCDQ	8.0	7.6	7.6	7.6

4 sets of beam-based settings, smooth transition between different sets.

Each setting set must be validated by loss maps.

Reminder of present collimation

Table 1: List of movable LHC collimators.

Functional type	Name	Plane	Num.	Material
Primary IR3	TCP	Н	2	CFC
Secondary IR3	TCSG	H	8	CFC
Absorbers IR3	TCLA	H,V	8	W
Primary IR7	TCP	H,V,S	6	CFC
Secondary IR7	TCSG	H,V,S	22	CFC
Absorbers IR7	TCLA	H,V	10	W
Tertiary IR1/2/5/8	TCT	H,V	16	W
Physics debris absor.	TCL	H	4	Cu
Dump protection	TCSG	H	2	CFC
	TCDQ	H	2	C
Inj. prot. (lines)	TCDI	H,V	13	CFC
Inj. prot. (ring)	TDI	V	2	C
	TCLI	V	4	CFC
	TCDD	V	1	CFC

Reminder: all settings will be given in units of the betatron beam size along the collimator axis:

$$\sigma_{\text{coll}} = \sqrt{\beta_{\text{coll}} \epsilon_{\text{nom.}}}$$

$$\beta_{\text{coll}} = \sqrt{\beta_x^2 \cos^2(\theta_{\text{coll}}) + \beta_y^2 \sin^2(\theta_{\text{coll}})}$$

Collimation limits for beta* reach

Collimator setting (prim) required for triplet protection from 7 TeV secondary halo:

$$a_{coll} \leq a_{triplet} \cdot \sqrt{\frac{\beta_{coll}}{\beta_{triplet}}} \cdot \left(\frac{A_{primary}^{\max}}{A_{secondary}^{\max}}\right)$$

~ 0.6

Collimator gap must be 10 times smaller than available triplet aperture!

Collimator settings usually defined in sigma with nominal emittance!

RA Chamonix XII